Author Archives: mike@standardsmichigan.com

Loading
loading...

Uniform Plumbing Code

“Niagara” 1857 Frederic Edwin Church

Although the 2024 Revision is substantially complete there are a number of technical and administrative issues to be resolved before the final version is released for public use. Free access to the most recent edition is linked below.

CODE DEVELOPMENT

TENTATIVE – 2027 UPC/UMC CODE DEVELOPMENT TIMELINE

Report on Comments for the 2024 Uniform Plumbing Code

 

Life Safety Code

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

Energy Standard for *Sites* and Buildings

ANSI Standards Action Weekly Edition

 

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

Several energy related redlines are open for consultation through April 1st.  

Education industry facility managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World

Group A Model Building Codes

2024 International Building Code

Ahead of the April 7-16 Committee Action Hearings in Orlando for the Group A tranche of titles in the ICC catalog we will examine the transcripts linked below:

International Building Code (Occupancy Classification and Use)

Educational Group E
Note that there is a great deal of nuance in the definitions for healthcare and research-related occupancies

International Building Code (Electrical)

Emergency and Standby Power Systems

Lightning Protection Systems

IBC Chapter 27 Proposal

International Building Code (Fire Safety)

International Existing Building Code

International Fire Code

International Mechanical Code

International Performance Code for Buildings and Facilities

International Plumbing Code

International Property Maintenance Code

International Swimming Pool and Spa Code

International Zoning Code

We will examine safety and sustainability concepts tracking in the monographs linked below:

2021 / 2022 Code Development: Group A

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

2021 GROUP A PUBLIC COMMENT AGENDA (1425 Pages)

There are over 100 concepts “in play”; a partial list appears below:

423.5.2 Location of schools used as storm shelters.

423.4.1 Required Occupant Capacity in storm shelters

917.1 Requirement for mass notification studies for colleges and universities.

403.3.6 Door locking.

1003.3.1 Fat, oil and grease receptors in kitchens.

Sections 403.1.1 and 403.2.  Minimum number of plumbing fixtures in various occupancy classifications and how many genders.

1110.3 Adult Changing Stations.

410.4.1 Performance theater actor changing room separation from stage.

1202.7 Soil Gas Control.  Radon levels in schools.

1204.1.1 Percentage of natural light in classrooms.

321.1 Artificial combustible vegetation on roofs and near buildings.

907.2.1 Manual fire alarm pull stations located at outdoor stadium bleachers

915.2.3 4 Carbon monoxide detectors in Group E occupancies.

501.1 Accessory dwelling units in residential zones

801.2.3.1 Accessory dwelling unit parking.

We will have time to sort through them, assign priorities and prepare proposals based upon colloquia over the next few weeks.  Use the login credentials at the upper right of our home page.

April 30, 2023 Update of the New ICC Code, Standard and Guideline Process

Minimum Design Loads and Associated Criteria for Buildings and Other Structures



Updated: September 13

(Original Post: April 12, 2021)

 

During today’s colloquium we will review all of the concepts tracking in the Group A tranche relevant to student housing facilities owned by the college, university or school district; soon to be discussed during the Committee Action Hearings starting September 22nd.   There are quite a few so we will likely not have time to cover best practice titles for off-campus housing; a sensitive area.  We will set a separate colloquium for this topic in early 2022.

Group A Committee Action Hearings begin September 22nd and we will provide a link to the ICC livestream every day.


Updated: August 17, 2021

(Original Post: April 12, 2021)

During today’s colloquium on fire safety we will review all of the concepts tracking in the Group A tranche; soon to be discussed during the Committee Action Hearings starting September 22nd.

 


July 12th

For today’s colloquium on elevators and lifts we will review the following concepts tracking in the Group A tranche:

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

Keep in mind that most of these failed as stand-alone proposals but will likely inform decisions on related proposals; at least administratively.

Continuation of the Group A Code Development may be tracked below:

2021/2022 Code Development Cycle

You may key in your own responses starting HERE.

The ICC catalog informs a large part of our own agenda so we deal with titles within it nearly every day on nearly every issue.  For example, we will track interaction of Article 620 of the National Electrical Code, Chapter 7 of the Life Safety Code, and Chapter 30 Elevators and Conveying Systems in the International Building Code


June 14

For today’s colloquium — a review of the construction spend rate — today note the following:

Table of Contents identifying administration of the Group A revision cycle

For the Nurse & Dentist colloquium today we note the following:

We find most of the discussion centered on nursing home safety concepts; a focus area given the circumstances of the pandemic.   Public comment closes the end of this week.

For the Lively Arts colloquium today we note the following:

  • Fire hazard associated with theatrical lighting and assembly construction materials.
  • Gender sensitive water closet count in theaters and assembly areas
  • Schools as storm shelters

For the Housing colloquium earlier this month we examined the report linked below for concepts related to student housing facilities in these three groups:

  • University-owned dormitories
  • Student residences owned by the private sector; a very large market now
  • Privately-owned off-campus housing in close proximity to educational campuses

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

Consultation closes July 2nd.

We will also examine related concepts tracking through the NFPA and ASHRAE catalog.


June 9

What got through?  The complete monograph is linked below.  We will be picking through these one-by-one, topic-by-topic, according to the topics of our daily colloquia ahead of the July 2nd deadline:

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

– G97-21: Exception expansion for occupant capacity when schools are used as storm shelters

– G35-21 Table 307 Hazardous materials in higher education laboratories

– F105-21 Risk assessments for mass notification system scope expansion for younger children

– Others regarding healthcare settings too nuanced and complex to describe briefly here….

Generally speaking, most of the proposals briefly identified below were rejected.

CLICK HERE to comment directly.   Join us any day at 15:00 UTC


May 24

CLICK HERE for the Results of Committee Action Hearings on the 2021 proposed changes to the international codes.  You may key in your own comments on these results into ICC’s cdpACCESS Code Development System until July 2nd.  Public Comment Hearings run from September 22 through September 29th according to the ICC 2021/2022 Group A Code Development schedule.


April 12

The International Code Council will host public hearings on its Group A Codes, many of which will affect education community safety and sustainability.  The proposals on the docket of the various committee meetings are relevant to every topic on our daily colloquia (See CALENDAR).  We will be attending these meetings and discussing proposals and decisions in this first part of ICC’s code development process.  The transcript of the complete monograph is linked below:

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

We will be referring to this transcript every day for the next month.  CLICK THE IMAGE BELOW TO START LIVECAST STREAM.

VIEW ONLY WEBCAST

Proposals to watch:

IPC § 403.1.1 | P26-21 | Calculation method revision for plumbing fixtures for sporting arenas

IFC § 304 et. al | F9-21 | Waste container concepts

IFC § 304.1 | F8-21 | Valet waste concepts in R-2 occupancies

ICCPC § 1205 | PC15-21 | Non-potable and grey-water recycling

IFC § 805.2 | G3-21 | Wastebaskets and linen containers in Group I-1, I-2, etc

IBC § 713.13.4 | FS57-21 | Chute discharge rooms in recycling or laundry areas

IBC § 503.1 | G104-21 | Rooftop photovoltaic systems.

IBC § 1105.1.1 | E116-21 | Power-operated doors at public entrances.  (Electrification of building openings gathers pace.  Remember the good old days when you simply reached for the doorknob?)

IBC § 716.2.6.1, et al | FS85-21 | Fire doors in storm shelters

IBC § 202, et. al | G94-21 | Expansion of storm shelter concepts to “severe windstorms”

IFC § 304.3, et al | F9-21 | 304.3.7 Waste containers with a capacity of 20 gallons or more in Group R-2 college and university dormitories.

IBC § 1213, et al | G172-21 | Stanchions and grab bars (student dormitories and healthcare facilities)

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.7| E47-21 | Exceptions for stairway door operability with failure of power supply

IBC § 3301, et. al| G199-21 Part 1 | Fire safety during construction concepts; removal of waste, Site Safety Plan

IBC Section 202, et. al | G110-21 |  Live Fire Training Building(s)

IMC Table 403.3.3 | M21-21 |  Minimum Ventilation Rates for Animal Facilities

IBC § 1004.8, et al| E10-21 |  Concentrated business use areas (such as computer rooms and data processing centers).  See the G99-21 series of proposals for computer rooms.

IFC, et. al| F18-21 |  Closer correlation with NFPA 96 (large administrative changes for O&M of ICT fire protection systems)

IFC § 308.4.1, et al| G44-21 |  Groups R-2 dormitories

IBC § 202 (NEW) | G66-21 |  Electrical mobility definitions

IBC § 1107.2, et al | E124-21 & E125-21 & E126-21 |  Electrical vehicle charging stations for R-2 occupancies.

IBC § 1104 | E11-21 |  Posting of occupant load

IBC § 1009.8| E35-21 |  Two-way emergency communication

IFC § 202 et. al | F69-21| Animal Housing Facility

IPC § 609.3. al | P102-21| Hot handwashing water

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IFC § 911-21 | F119-21| Crosswalk and correlation with NFPA 99 and NFPA 70

IPC § 1003.1 et. al | P131-21| Fat, oil and grease interceptors (for kitchens)

IFC § 903.2 et. al | F65-21| Ambulatory Care facilities

IFC § 917.1, et. al | F105-21| More risk analysis for Group E occupancies

IFC Chapter 9 Fire & Life Safety Systems | F102-21 | State-by-state analysis supporting hottened fire safety requirements

IFC § 202 et. al | F5-21| Occupancy classifications

ICCPC Chapter 3 Design Performance Levels | PC1-21 | Risk Categories for schools and other occupancy types

IBC § 503.2, et. al | G190-21 | Replacement buildings on the same lot

IBC § 1204.1, et. al | G166-21 |  Classrooms Group E natural light

IBC § 423.4.1 | G96-21, et. al | Critical emergency operations; schools as storm shelters; required occupancy capacity

IBC § 1202.7 | G162-21 | Soil gas control systems in new educational buildings

IFC § 1103.9 | F116-21 | Carbon Monoxide detection

IPC § 403.3 | P33-21 | Location of toilet facilities

IPMC Chapter 3 General Requirements | PM10-21 | Accessibility and maintenance

IBC § 1008.1, et. al | E24-21 | Means of egress illumination

IBC § 202 | E26-21 | New definition for energy storage system

IFC § 1203.1.1| E26-21 | New definition for energy storage system

IBC § 1204.1.1 | G165-21 | Classroom natural light criteria

IBC § 1013.5 | E71-21 | Photoluminescent exit signs installation where they can actually be charged

IBC § 1010.2.10 | E49-21| Access control door locking system

IBC § 1010.2.11 | E51-21 and E52-21, et. al | Sensor release of electrically locked egress doors & delayed egress concepts

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 1010.12 | E42-21 | Locks and latches

IBC NEW § 202 | 43-21 | New definitions for Automatic Flush Bolt, et. al

IBC § 1010.2.3 | E44-21 | (Door) Hardware height

IBC NEW § 202 | E55-21 | Control vestibules (hospitals)

IBC § 1110.3 NEW | E142-21 | Adult Changing Stations

IBC § 3301| G199-21 Part I | Fire safety during constructionDenver Public Schools

IFC § NEW SECTIONS 203 Occupancy Classification and Use | F5-21 | See Page 1086

IFC § Chapters 1 – 3 | F14-21| Significant changes to administrative chapters

IBC § 410.1 | G73-21| Stage v.  Platform nomenclature with respect to fire load

IBC § 410.2.1| G77-21| Stage fire hazards

IBC § 410.2.1| G79-21| Stage fire hazards

IBC § 423.4 | G96-21| Critical emergency operations; occupant load for storm shelters

IBC § 423.5.1 | G97-21| Occupant load for storm shelters

G99-21 Part II et. al | Definitions of Information & Communications Technology; revisions to Section 429 Information Technology Equipment Facilities

G112-21, et. al| Sleeping lofts (common in student residence halls)

IBC § 505.2.2 | G115-21 Mixed occupancy buildings

IBC § 506.3.2 | G116-21 Minimum building frontage distance

IBC § 302.1 | G121-21 Occupancy classification

IBC § 1210.4 | G174-21 Use of radiant energy to inactivate bacteria

ICCPC § 1401.3.8 | PC16-21 Protection of secondary power services and equipment

IBC § 2701.1.1 | Group I-2 Electrical systems

IBC & IFC G175-21 | Lightning Protection Systems

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

IBC APPENDIX Q (NEW) |  G201-21  | Temporary Structures and Used to Serve Emergencies

IFC § 705.5.1 |  FS17-21 | Buildings in a public right-of-way

 

Notes on Group A Codes 2021

Reliability

Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward HopperWe are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2023 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of com

puting systems.

August 14, 2003

“The world is changed by examples, not by opinions.”

Marc Andreesen (Founder of Netscape, the first dominant web browser)

 

August 14, 2003 Power Outage at the University of Michigan

How Engineers are Strengthening the Electrical Power Grid

 

 

How does the electrical grid respond to a crisis?

If the power goes out after a thunderstorm, utility crews are on the job within hours to restore service and get the lights back on. Most electric utilities in the U.S. have a reputation for reliability and recovery from situations like this. It has been noticed as planners began thinking about increased natural disasters brought on by population migration patterns, manmade interference due to malicious cyber-attacks, and the instability brought about by adding large quantities of renewable energy.

At North Carolina State University, The Future Renewable Electric Energy Delivery and Management (FREEDOM) Systems Engineering Research Center was created through funding from the National Science Foundation in 2008 to modernize the electrical grid to accommodate sustainable energy, such as wind and solar power. The Freedom Center has been involved in developing online tools for assessing vulnerabilities to address cyber-physical security called distributed grid intelligence. The hope is that smart microgrids with sensors embedded throughout the system might be more resilient to failure and easier to bring back online and large multi-state electric grids. But the emerging smart grid, together with distributed renewable energy such as rooftop solar, presents a new set of challenges to resilience. The Smart Grid involves more distributed energy down to the home level. That kind of penetration adds a level of vulnerability to a cyber threat. Engineers will certainly have to pay attention to that as the grid gets smarter.

Emergency and Standby Power Systems

Sporty weather season in the United States inspires a revisit of best practice for designing, building and maintaining the systems that provide limited electricity when the primary source fails. We have been active in the development of this and related titles for decades and have presented several proposals to the technical committee. Public response on the Second Draft of the 2025 revision will be received until March 27, 2024.

Electrical building, World’s Columbian Exposition, Chicago (1892)

FREE ACCESS to the 2022 Edition of NFPA 110 Standard for Emergency and Standby Power Systems

The scope of NFPA 110 and NFPA 111 are close coupled  and summarized below:

NFPA 110 Standard for Emergency and Standby Power Systems. This standard contains requirements covering the performance of emergency and standby power systems providing an alternate source of electrical power to loads in buildings and facilities in the event that the primary power source fails.

NFPA 111 Stored Electrical Energy for Emergency and Standby Power Systems. This standard shall cover performance requirements for stored electrical energy systems providing an alternate source of electrical power in buildings and facilities in the event that the normal electrical power source fails.

FIRST DRAFT AGENDA | August 2022

Public comment on the First Draft of the 2025 Edition will be received until May 31, 2023.  

We have advocated in this standard since 1996 and still use the original University of Michigan Workspace; though those workspaces must be upgraded to the new Google Sites during 2021.  We provide a link to the Standards Michigan Workspace and invite you to join any of our electrical colloquia which are hosted jointly with the IEEE Education & Healthcare Facilities Committee four times per month in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [96-04]

Category: Electrical, Risk

Contact: Mike Anthony, Robert Arno, Neal Dowling, Jim Harvey, Robert Schuerger, Mike Hiler

More

ITM of Emergency Power Systems

Planning for Higher Education Journal: Revisiting the Campus Power Dilemma: A Case Study

Tom is a long-time colleague and friend so Mike happily posts his content:

454c656374726f746563686e6f6c6f6779

2023 National Electrical Safety Code

Project Introduction for the 2028 Edition (2:39 minutes)

Electrical Economics, Regulation & Litigation

“Railroad Sunset” 1929 | Edward Hopper

 

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content