Author Archives: mike@standardsmichigan.com

Loading
loading...

John A. Paulson Center

The New York University Paulson Center 181 Mercer dormitory is a state-of-the-art residence hall located in the heart of Manhattan’s SoHo neighborhood. The building was designed by COOKFOX architects and completed in 2020.

The Paulson 181 Mercer dormitory is a 23-story building that houses more than 700 students in a mix of singles, doubles, triples, and quads. The building features a number of amenities designed to enhance the student living experience, including a fitness center, music practice rooms, a game room, and a rooftop terrace with stunning views of the city.

One of the most unique features of the Paulson 181 Mercer dormitory is its focus on sustainability and green design. The building is expected to achieve LEED Gold certification, which recognizes buildings that are designed and constructed to minimize their environmental impact. Some of the sustainable features of the building include a green roof, rainwater harvesting system, and energy-efficient lighting and HVAC systems.

The $1.2 billion John A. Paulson Center — which opened in January 2023 — provides all of the occupancy classes for the “university without a quad”.

Student Accommodation

Schenkingen

Standards New York

*In 2005, Paulson began investing heavily in credit default swaps, which are essentially insurance contracts that pay out if a particular debt instrument defaults. He used these swaps to bet against the subprime mortgage market, which he believed was overvalued and ripe for collapse. When the housing market crashed in 2008, Paulson’s bets paid off in a big way, earning him billions of dollars in profits.

Paulson has also been involved in other successful trades, including investments in gold and banking stocks. However, his bet against the subprime mortgage market remains his most famous and lucrative trade.

 

Student Accommodation

Harvard University Dormitory Room | Smithsonian Museum | Thomas Warren Sears Collection

Today we break down public consultation notices for literature that sets the standard of care for the safety and sustainability of student housing in K-12 prep schools, colleges and universities.  We deal with off-campus housing in a separate session because it involves local safety and sustainability regulations; most of which are derived from residential housing codes and standards.

Monograph: The Case for Campus Housing

Off-Campus Housing

The topic cuts across many disciplines and standards setting organization bibliographies. We usually set our bearing with the following titles:

2021 International Building Code: Section 310 Residential Group R-2 + related titles such as the IFC, IMC, IPC, IECC

2021 Fire Code: Chapter 6 Classification of Occupancy  + related titles such as NFPA 70B, NFPA 72 and NFPA 110

2023 National Electrical Code: Articles 210-230 + related Articles 110 and 410

ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings: Annex G

Like any other classification of real property the average cost for room and board for a public university student dormitory depends on several factors such as the location of the university, the type of dormitory, and the meal plan options.  According to the College Board, the average cost of room and board for the 2021-2022 academic year at a public four-year in-state institution was $11,620. However, this figure can range from around $7,000 to $16,000 or more depending on the specific institution and its location.   It’s important to note that this average cost only includes the basic meal plan and standard dormitory room. Students may also have additional costs for a larger or more luxurious dorm room, a premium meal plan, or other expenses such as laundry or parking fees.   

According to ring Rider Levett Bucknall, a global property and construction consultancy firm, the average construction cost for a student housing facility in the United States in 2021 was around $202 per square foot. However, this figure can range from around $150 to $300 per square foot or more depending on the specific project.  Life cycle cost for new facilities with tricked out net-zero gadgets is hard to come by at the moment.

Because money flows freely through this domain we examine scalable densities and the nature of money flow patterns; partially tracked by the Electronic Municipal Market Access always on the standing agenda of our Finance colloquium.

More

National Institute of Standards & Technology: The Character of Residential Cooktop Fires

Deserted College Dorms Sow Trouble for $14 Billion in Muni Bonds

Dormitory, Fraternity, Sorority and Barrack Structure Fires

Here are a few pros and cons of private sector construction of university-owned student housing:

Pros:

  1. Increased housing availability: Private sector developers may be able to build more student housing units than a university could build on its own, which can help to alleviate the shortage of on-campus housing for students.
  2. Faster construction: Private developers may be able to complete construction projects faster than universities, which can help to reduce the amount of time that students must wait for new housing options.
  3. Reduced financial burden on the university: The cost of building and maintaining student housing can be significant, and private sector developers may be willing to bear some of these costs. This can help to reduce the financial burden on the university and free up resources for other initiatives.
  4. Professional management: Private developers may have more experience managing large housing projects and may be able to provide more professional management services than a university could provide on its own.

Cons:

  1. Higher costs for students: Private developers may charge higher rents than a university would charge for student housing, which can make housing less affordable for some students.
  2. Reduced university control: Private developers may have different priorities than a university would have when it comes to building and managing student housing. This can lead to a reduced level of control for the university over housing quality, management, and policies.
  3. Potential conflicts of interest: Private developers may be more focused on making a profit than on meeting the needs of students or the university, which can create potential conflicts of interest.
  4. Less transparency: Private developers may not be subject to the same level of transparency and accountability as a university would be when it comes to housing policies, decision-making processes, and financial management.

It’s important to note that these pros and cons may vary depending on the specific circumstances and context of each individual university and private sector partnership.


Gallery: Off-Campus Accommodation

Uniform Plumbing Code

“Niagara” 1857 Frederic Edwin Church

Although the 2024 Revision is substantially complete there are a number of technical and administrative issues to be resolved before the final version is released for public use. Free access to the most recent edition is linked below.

CODE DEVELOPMENT

TENTATIVE – 2027 UPC/UMC CODE DEVELOPMENT TIMELINE

Report on Comments for the 2024 Uniform Plumbing Code

 

Life Safety Code

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

Energy Standard for *Sites* and Buildings

ANSI Standards Action Weekly Edition

 

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

Several energy related redlines are open for consultation through April 1st.  

Education industry facility managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World

Group A Model Building Codes

2024 International Building Code

Ahead of the April 7-16 Committee Action Hearings in Orlando for the Group A tranche of titles in the ICC catalog we will examine the transcripts linked below:

International Building Code (Occupancy Classification and Use)

Educational Group E
Note that there is a great deal of nuance in the definitions for healthcare and research-related occupancies

International Building Code (Electrical)

Emergency and Standby Power Systems

Lightning Protection Systems

IBC Chapter 27 Proposal

International Building Code (Fire Safety)

International Existing Building Code

International Fire Code

International Mechanical Code

International Performance Code for Buildings and Facilities

International Plumbing Code

International Property Maintenance Code

International Swimming Pool and Spa Code

International Zoning Code

We will examine safety and sustainability concepts tracking in the monographs linked below:

2021 / 2022 Code Development: Group A

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

2021 GROUP A PUBLIC COMMENT AGENDA (1425 Pages)

There are over 100 concepts “in play”; a partial list appears below:

423.5.2 Location of schools used as storm shelters.

423.4.1 Required Occupant Capacity in storm shelters

917.1 Requirement for mass notification studies for colleges and universities.

403.3.6 Door locking.

1003.3.1 Fat, oil and grease receptors in kitchens.

Sections 403.1.1 and 403.2.  Minimum number of plumbing fixtures in various occupancy classifications and how many genders.

1110.3 Adult Changing Stations.

410.4.1 Performance theater actor changing room separation from stage.

1202.7 Soil Gas Control.  Radon levels in schools.

1204.1.1 Percentage of natural light in classrooms.

321.1 Artificial combustible vegetation on roofs and near buildings.

907.2.1 Manual fire alarm pull stations located at outdoor stadium bleachers

915.2.3 4 Carbon monoxide detectors in Group E occupancies.

501.1 Accessory dwelling units in residential zones

801.2.3.1 Accessory dwelling unit parking.

We will have time to sort through them, assign priorities and prepare proposals based upon colloquia over the next few weeks.  Use the login credentials at the upper right of our home page.

April 30, 2023 Update of the New ICC Code, Standard and Guideline Process

Minimum Design Loads and Associated Criteria for Buildings and Other Structures



Updated: September 13

(Original Post: April 12, 2021)

 

During today’s colloquium we will review all of the concepts tracking in the Group A tranche relevant to student housing facilities owned by the college, university or school district; soon to be discussed during the Committee Action Hearings starting September 22nd.   There are quite a few so we will likely not have time to cover best practice titles for off-campus housing; a sensitive area.  We will set a separate colloquium for this topic in early 2022.

Group A Committee Action Hearings begin September 22nd and we will provide a link to the ICC livestream every day.


Updated: August 17, 2021

(Original Post: April 12, 2021)

During today’s colloquium on fire safety we will review all of the concepts tracking in the Group A tranche; soon to be discussed during the Committee Action Hearings starting September 22nd.

 


July 12th

For today’s colloquium on elevators and lifts we will review the following concepts tracking in the Group A tranche:

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

Keep in mind that most of these failed as stand-alone proposals but will likely inform decisions on related proposals; at least administratively.

Continuation of the Group A Code Development may be tracked below:

2021/2022 Code Development Cycle

You may key in your own responses starting HERE.

The ICC catalog informs a large part of our own agenda so we deal with titles within it nearly every day on nearly every issue.  For example, we will track interaction of Article 620 of the National Electrical Code, Chapter 7 of the Life Safety Code, and Chapter 30 Elevators and Conveying Systems in the International Building Code


June 14

For today’s colloquium — a review of the construction spend rate — today note the following:

Table of Contents identifying administration of the Group A revision cycle

For the Nurse & Dentist colloquium today we note the following:

We find most of the discussion centered on nursing home safety concepts; a focus area given the circumstances of the pandemic.   Public comment closes the end of this week.

For the Lively Arts colloquium today we note the following:

  • Fire hazard associated with theatrical lighting and assembly construction materials.
  • Gender sensitive water closet count in theaters and assembly areas
  • Schools as storm shelters

For the Housing colloquium earlier this month we examined the report linked below for concepts related to student housing facilities in these three groups:

  • University-owned dormitories
  • Student residences owned by the private sector; a very large market now
  • Privately-owned off-campus housing in close proximity to educational campuses

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

Consultation closes July 2nd.

We will also examine related concepts tracking through the NFPA and ASHRAE catalog.


June 9

What got through?  The complete monograph is linked below.  We will be picking through these one-by-one, topic-by-topic, according to the topics of our daily colloquia ahead of the July 2nd deadline:

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

– G97-21: Exception expansion for occupant capacity when schools are used as storm shelters

– G35-21 Table 307 Hazardous materials in higher education laboratories

– F105-21 Risk assessments for mass notification system scope expansion for younger children

– Others regarding healthcare settings too nuanced and complex to describe briefly here….

Generally speaking, most of the proposals briefly identified below were rejected.

CLICK HERE to comment directly.   Join us any day at 15:00 UTC


May 24

CLICK HERE for the Results of Committee Action Hearings on the 2021 proposed changes to the international codes.  You may key in your own comments on these results into ICC’s cdpACCESS Code Development System until July 2nd.  Public Comment Hearings run from September 22 through September 29th according to the ICC 2021/2022 Group A Code Development schedule.


April 12

The International Code Council will host public hearings on its Group A Codes, many of which will affect education community safety and sustainability.  The proposals on the docket of the various committee meetings are relevant to every topic on our daily colloquia (See CALENDAR).  We will be attending these meetings and discussing proposals and decisions in this first part of ICC’s code development process.  The transcript of the complete monograph is linked below:

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

We will be referring to this transcript every day for the next month.  CLICK THE IMAGE BELOW TO START LIVECAST STREAM.

VIEW ONLY WEBCAST

Proposals to watch:

IPC § 403.1.1 | P26-21 | Calculation method revision for plumbing fixtures for sporting arenas

IFC § 304 et. al | F9-21 | Waste container concepts

IFC § 304.1 | F8-21 | Valet waste concepts in R-2 occupancies

ICCPC § 1205 | PC15-21 | Non-potable and grey-water recycling

IFC § 805.2 | G3-21 | Wastebaskets and linen containers in Group I-1, I-2, etc

IBC § 713.13.4 | FS57-21 | Chute discharge rooms in recycling or laundry areas

IBC § 503.1 | G104-21 | Rooftop photovoltaic systems.

IBC § 1105.1.1 | E116-21 | Power-operated doors at public entrances.  (Electrification of building openings gathers pace.  Remember the good old days when you simply reached for the doorknob?)

IBC § 716.2.6.1, et al | FS85-21 | Fire doors in storm shelters

IBC § 202, et. al | G94-21 | Expansion of storm shelter concepts to “severe windstorms”

IFC § 304.3, et al | F9-21 | 304.3.7 Waste containers with a capacity of 20 gallons or more in Group R-2 college and university dormitories.

IBC § 1213, et al | G172-21 | Stanchions and grab bars (student dormitories and healthcare facilities)

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.7| E47-21 | Exceptions for stairway door operability with failure of power supply

IBC § 3301, et. al| G199-21 Part 1 | Fire safety during construction concepts; removal of waste, Site Safety Plan

IBC Section 202, et. al | G110-21 |  Live Fire Training Building(s)

IMC Table 403.3.3 | M21-21 |  Minimum Ventilation Rates for Animal Facilities

IBC § 1004.8, et al| E10-21 |  Concentrated business use areas (such as computer rooms and data processing centers).  See the G99-21 series of proposals for computer rooms.

IFC, et. al| F18-21 |  Closer correlation with NFPA 96 (large administrative changes for O&M of ICT fire protection systems)

IFC § 308.4.1, et al| G44-21 |  Groups R-2 dormitories

IBC § 202 (NEW) | G66-21 |  Electrical mobility definitions

IBC § 1107.2, et al | E124-21 & E125-21 & E126-21 |  Electrical vehicle charging stations for R-2 occupancies.

IBC § 1104 | E11-21 |  Posting of occupant load

IBC § 1009.8| E35-21 |  Two-way emergency communication

IFC § 202 et. al | F69-21| Animal Housing Facility

IPC § 609.3. al | P102-21| Hot handwashing water

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IFC § 911-21 | F119-21| Crosswalk and correlation with NFPA 99 and NFPA 70

IPC § 1003.1 et. al | P131-21| Fat, oil and grease interceptors (for kitchens)

IFC § 903.2 et. al | F65-21| Ambulatory Care facilities

IFC § 917.1, et. al | F105-21| More risk analysis for Group E occupancies

IFC Chapter 9 Fire & Life Safety Systems | F102-21 | State-by-state analysis supporting hottened fire safety requirements

IFC § 202 et. al | F5-21| Occupancy classifications

ICCPC Chapter 3 Design Performance Levels | PC1-21 | Risk Categories for schools and other occupancy types

IBC § 503.2, et. al | G190-21 | Replacement buildings on the same lot

IBC § 1204.1, et. al | G166-21 |  Classrooms Group E natural light

IBC § 423.4.1 | G96-21, et. al | Critical emergency operations; schools as storm shelters; required occupancy capacity

IBC § 1202.7 | G162-21 | Soil gas control systems in new educational buildings

IFC § 1103.9 | F116-21 | Carbon Monoxide detection

IPC § 403.3 | P33-21 | Location of toilet facilities

IPMC Chapter 3 General Requirements | PM10-21 | Accessibility and maintenance

IBC § 1008.1, et. al | E24-21 | Means of egress illumination

IBC § 202 | E26-21 | New definition for energy storage system

IFC § 1203.1.1| E26-21 | New definition for energy storage system

IBC § 1204.1.1 | G165-21 | Classroom natural light criteria

IBC § 1013.5 | E71-21 | Photoluminescent exit signs installation where they can actually be charged

IBC § 1010.2.10 | E49-21| Access control door locking system

IBC § 1010.2.11 | E51-21 and E52-21, et. al | Sensor release of electrically locked egress doors & delayed egress concepts

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 1010.12 | E42-21 | Locks and latches

IBC NEW § 202 | 43-21 | New definitions for Automatic Flush Bolt, et. al

IBC § 1010.2.3 | E44-21 | (Door) Hardware height

IBC NEW § 202 | E55-21 | Control vestibules (hospitals)

IBC § 1110.3 NEW | E142-21 | Adult Changing Stations

IBC § 3301| G199-21 Part I | Fire safety during constructionDenver Public Schools

IFC § NEW SECTIONS 203 Occupancy Classification and Use | F5-21 | See Page 1086

IFC § Chapters 1 – 3 | F14-21| Significant changes to administrative chapters

IBC § 410.1 | G73-21| Stage v.  Platform nomenclature with respect to fire load

IBC § 410.2.1| G77-21| Stage fire hazards

IBC § 410.2.1| G79-21| Stage fire hazards

IBC § 423.4 | G96-21| Critical emergency operations; occupant load for storm shelters

IBC § 423.5.1 | G97-21| Occupant load for storm shelters

G99-21 Part II et. al | Definitions of Information & Communications Technology; revisions to Section 429 Information Technology Equipment Facilities

G112-21, et. al| Sleeping lofts (common in student residence halls)

IBC § 505.2.2 | G115-21 Mixed occupancy buildings

IBC § 506.3.2 | G116-21 Minimum building frontage distance

IBC § 302.1 | G121-21 Occupancy classification

IBC § 1210.4 | G174-21 Use of radiant energy to inactivate bacteria

ICCPC § 1401.3.8 | PC16-21 Protection of secondary power services and equipment

IBC § 2701.1.1 | Group I-2 Electrical systems

IBC & IFC G175-21 | Lightning Protection Systems

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

IBC APPENDIX Q (NEW) |  G201-21  | Temporary Structures and Used to Serve Emergencies

IFC § 705.5.1 |  FS17-21 | Buildings in a public right-of-way

 

Notes on Group A Codes 2021

Reliability

Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward HopperWe are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2023 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of com

puting systems.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content