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ABSTRACT There is increased interest in using street photos to understand fashion trends. Though street
photos usually contain rich clothing information, there are several technical challenges to their analysis. First,
street photos collected from social media sites often contain user-provided noisy labels, and training models
using these labels may deteriorate prediction performance. Second, most existing methods predict multiple
clothing attributes individually and do not consider the potential to share knowledge between related tasks.
In addition to these technical challenges, most fashion image datasets created by previous studies focus
on American and European fashion styles. To address these technical challenges and understand fashion
trends in Asia, we created RichWear, a new street fashion dataset containing 322,198 images with various
text labels for fashion analysis. This dataset, collected from an Asian social network site, focuses on street
styles in Japan and other Asian areas. RichWear provides a subset of expert-verified labels in addition to
user-provided noisy labels for model training and evaluation.We propose the Fashion Attributes Recognition
Network (FARNet) based on the multi-task learning framework to improve fashion recognition. Instead of
predicting each clothing attribute individually, FARNet predicts three types of attributes simultaneously,
and, once trained, this network leverages the noisy labels and generates corrected labels based on the input
images. Experimental results show that this approach significantly outperforms existing methods. Applying
the trainedmodel to the RichWear dataset, we report Asian fashion trends and street styles based on predicted
labels and image clusters from latent feature vectors.

INDEX TERMS Deep learning, fashion dataset, fashion trends, image clustering, image recognition,
multi-label classification, multi-task learning, noisy labels.

I. INTRODUCTION
As interest has increased in the possible relationships
between artificial intelligence (AI) and fashion, more and
more approaches are being proposed for fashion recogni-
tion and understanding. Meanwhile, fashion retailers are
using AI technologies in inventory management, clothing
recommendation, and virtual clothes fitting to improve their
decision-making and competitive advantages [1]–[3].

One driving factor in the increasing popularity of fashion
AI is that internet users upload and share massive numbers
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of photos online. These street photos on social media sites
provide much-needed data for AI research. At the same time,
the large-scale street images have led researchers to analyze
street fashion using techniques such as deep learning [4]–[10]
and natural language processing [11].

We have observed that most datasets used for street fashion
research [4], [5], [12]–[15] are collected from social media
sites based in the United States and Europe, and these images
are mainly related to American and European street styles.
Few datasets focus on Asian street styles. Moreover, fashion
data collected from the internet usually contain user-provided
labels that are inconsistent with the images and are referred
to as noisy labels. Training deep learning models directly on
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FIGURE 1. Overview of our work.

noisy labels may result in degraded predictive performance.
As a result, time-consuming manual clean-ups are required
when research testbeds contain these labels.

Moreover, there are rich clothing attributes in a street fash-
ion image, such as colors, categories (e.g., shirt and pants),
and patterns. Given that fine-grained attribute recognition is
challenging, most previous studies built separate models to
predict each clothing attribute. In this process, each model
learns a classification task individually, which does not allow
for the potential to share knowledge between related tasks.

To address these issues, we created RichWear, a new fash-
ion dataset containing 322,198 high-quality street fashion
images with noisy labels from the Asian fashion website
WEAR.1 The dataset focuses on the street styles in Japan
and other Asian areas from 2017 to 2019. We manually
annotated 4,368 images with verified clothing labels for
model training. To increase the sample size, we combined the
dataset with Fashion550k [5],2 a public street fashion dataset.
We also manually corrected any errors and inconsistencies
in the verified labels of Fashion550k. To improve fashion
recognition, we propose the Fashion Attributes Recognition
Network (FARNet) that includes a Noise Correction Network
and a Pattern Classification Network on top of a Convolu-
tional Neural Network (CNN) image feature extractor. The
two main networks of FARNet are trained jointly to simul-
taneously predict clothing colors, categories, and patterns
based on the input image and its noisy labels. Also, because
we are interested in undiscovered street fashion trends in
Asia, aggregation of predicted labels and image clusters in
the RichWear dataset allows for identification of meaningful
trends and discovery of style dynamics. The overview of our
work is shown in Fig. 1.
The remainder of this work is organized as follows:

We discuss related studies in Section II and then present
our new dataset in Section III. Section IV introduces the

1https://wear.jp/.
2https://esslab.jp/∼ess/en/data/fashion550k/.

proposed method for fashion recognition and is followed by
experimental results in Section V. Finally, we present Asian
street fashion trend analysis in Section VI and conclude our
study in Section VII.

II. LITERATURE REVIEW
There is a large amount of literature that develops deep learn-
ing and computer vision approaches to image understanding
and fashion recognition. Our literature review focuses on
three streams of related studies: (1) fashion attribute recogni-
tion, (2) street fashion analysis, and (3) street fashion datasets.

A. FASHION ATTRIBUTE RECOGNITION
Fashion attribute recognition aims to identify one or
more fashion-related attributes according to input images.
Recent works have shown growing interest in training
machines for effective visual recognition on large-scale
image datasets. Existing research on fashion attribute recog-
nition covers the tasks of image parsing [13], [16], image
classification [17]–[22], and classification with noisy
labels [5], [23].

Image parsing or image segmentation is the task of seg-
menting and identifying all of the objects in an image.
Early research used image parsing algorithms to produce
pixelwise annotation for clothing attribute recognition by
assigning a semantic label to each pixel in the image.
Yamaguchi et al. [13] introduced a retrieval-based approach
that retrieves images similar to the query image from a small
set of hand-parsed images with labels and then uses the
retrieved images to parse the clothing attributes of the query.
Yang et al. [16] developed a clothing co-parsing system to
jointly parse a set of clothing images and produce pixelwise
annotation of attributes. This co-parsing system outperforms
the approach of Yamaguchi et al. [13] and other image pars-
ing methods of attribute recognition on the fashion image
datasets.

In recent years, image classification has been widely used
for attribute recognition with good performance. The goal
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of image classification is to predict a single label or a set
of labels for a given image. Image classification models
often employ CNNs to extract features related to shapes and
textures in an image and to generate predictions of relevant
attributes [17]. Similar ideas have been extended to cloth-
ing recommendation [18] and fashion image retrieval [19],
[20]. To improve the performance of classification, sev-
eral studies introduced multi-task learning (MTL) into their
methods [21], [22]. By learning all tasks jointly, MTL can
significantly improve the performance of fashion recogni-
tion through sharing knowledge and leveraging information
between different tasks.

While fashion images can be easily collected from
social media sites, user-generated fashion data often contain
error-prone labels that are not necessarily consistent with the
images. Moreover, human annotation of image labels is often
expensive and time-consuming, and training on noisy labels
directly results in a substantial decrease in the performance
of deep neural networks [24]. Therefore, understanding how
to leverage noisy labels and improve predictive performance
is a critical research direction. Veit et al. [23] proposed a
multi-task network that jointly learns to clean noisy labels and
to perform multi-label classification. Their results show that
this approach is better than directly training an image classi-
fier on noisy labels. Following the work of Veit et al. [23],
Inoue et al. [5] developed a multi-label classification model
for a fashion dataset that includes a large number of instances
with noisy labels and a small set of instances with veri-
fied labels. By leveraging noisy labels and cleaning them
for model training, this method both reduces the overfitting
problem that can occur when training is limited to a small
amount of label-verified data and improves overall model
performance.

B. STREET FASHION ANALYSIS
Street fashion does not originate from studios or runways,
but from real-life streetwear [25]. As more internet users
share street photos on social media, street fashion has grad-
ually become a driving force for fashion change and fash-
ion design [4]. Nevertheless, unlike online shopping images
and runway images with standing models and simple back-
grounds, street fashion images usually contain people in
different poses with various backgrounds, a difference that
increases the difficulty of image recognition. Street photos
collected from social media sites also often have noisy labels
that demand a new technical approach. In this subsection,
we provide a review of studies that focus on street fashion
analysis, including fashion trends discovery [4], [8], [9], style
discovery and construction [7], [10], [11], [26], and popular-
ity prediction [6], [27].

Since street fashion trends are strongly influenced by cli-
mate and culture, they may vary over time and by location.
Social events like festivals and sporting matches are also
factors that affect streetwear. To identify street fashion trends
in a large collection of image data, several studies use not
only the aforementioned attribute recognition methods but

also image clustering techniques [4], [8]. Image clustering
utilizes extracted image features and provides an unsuper-
visedmethod for visual understanding. To detect social events
that affect street fashion, Mall et al. [9] followed the work of
Matzen et al. [8] by building separate CNNs for each clothing
attribute recognition and performing image clustering. They
also developed a parametric model to discover long-term
trends and identify short-term spikes caused by social events.
However, some models used to generate image features for
clustering were trained only with noisy labels, without veri-
fied labels as the ground truth [4], [26].

Specific collocations of garments create different fashion
styles, and these styles depend on specific visual features,
such as color theme and collar shape [7]. Several studies
distinguish between different street fashion styles (e.g., casual
and rock) in image data by using CNN models [10], [26]
or the polylingual Latent Dirichlet Allocation (PolyLDA)
model [11]. Given that certain clothing features make up
unique fashion styles, Ma et al. [7] first proposed a multi-
modal deep learning model to construct fashion styles across
brands and over time.

Several studies have extended street fashion analysis
to popularity prediction [6], [27]. By utilizing likeabil-
ity (the number of likes or votes), these studies pre-
dicted the fine-grained popularity of an outfit or look.
Yamaguchi et al. [27] applied the image parsing method
based on [13] to recognize clothing attributes as image con-
tent factors. They then employed linear regression models to
predict the popularity of street photos using content factors
and social factors. Lo et al. [6] developed a deep temporal
sequence learning framework to predict the popularity of
individual outfits.

C. STREET FASHION DATASETS
Several street fashion studies created new datasets to facilitate
model training and evaluation. These datasets each contain a
different number of street fashion images with text labels or
other types of annotations dependent on the original research
purposes. The most commonly-used text labels are related
to clothing attributes, such as category, color, and sleeve
length, or to fashion styles, such as ethnic, casual, and fairy.
Table 1 lists selected public street fashion datasets created by
previous studies.We exclude some large fashion datasets, like
the DeepFashion dataset [22] and the Runway dataset [28],
that mainly contain online shopping or runway images rather
than street fashion.

Most studies collected street photos from social media
sites, such as Instagram and Chictopia [4], [5], [8], [12]–[14].
A few studies utilized search engines such as Google to gather
street photos by using fashion-related words as queries [10],
[29]. We find that most datasets cover only one or two cloth-
ing attributes, such as clothing category and color. The only
exception is STREETSTYLE-27K [8], which incorporates
12 clothing attributes. However, each of its images contains
only the human head and torso, instead of the full body.
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TABLE 1. Comparison of street fashion datasets.

In addition, most street fashion datasets [4], [5], [12]–[15]
primarily contain images from the United States and Europe.

D. RESEARCH GAPS
After reviewing previous research, we have identified sev-
eral gaps that merit further investigation. First, some prior
studies directly trained models with noisy labels, which may
have deteriorated predictive performance. Developing more
effective methods may address the problems associated with
noisy labels and improve image classification. Second, most
works built models to separately classify each type of clothing
attribute, which did not allow for knowledge sharing between
related tasks. Third, few street fashion datasets cover more
than one clothing attribute with verified labels. The limited
type of attributes cannot fully illustrate the rich information
inherent in street fashion photos. In addition, most datasets
primarily contain photos that originate in the United States
or Europe. Few focus on street fashion images from Asia.
Finally, few papers have investigated fashion trends in Asia.
As Asian consumer spending rises, many fashion companies
have been deepening their understanding of Asian fashion

trends in order to meet consumers’ needs [30]. Given the
growing importance of the Asian fashion market, it is valu-
able to explore this region’s street fashion trends and to
identify its style dynamics.

III. THE RichWear DATASET
The goal of our study is to create a deep learning architecture
in order to understand individual street photos and analyze the
aggregated fashion trends in Asia. However, existing street
fashion datasets mainly cover American and European street
photos, which are not suitable for our goal. To address this
issue, we have created RichWear,3 a new dataset that focuses
on the street fashion styles in Japan and other Asian areas.

A. IMAGE COLLECTION AND CLEANING
We collected street fashion images together with their text
labels from WEAR,4 a popular fashion coordination website
in Japan.We crawled 389,633 imageswith upload date, users’

3RichWear is openly available at https://github.com/hsinmin/richwear.
4https://wear.jp/.
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gender and country, user-provided clothing labels, clothing
brands, and user-created hashtags. Our dataset covers photos
from 2017 to 2019. The numbers of images of each season are
roughly the same, which is a plus for tracking fashion trends.

Many images uploaded by users are not suitable for model
training. For example, images of animals and body parts are
bad sources for street fashion understanding. Blurred images
and those that are heavily distorted by photo filters must
also be excluded. Following Simo-Serra and Ishikawa [26],
we created a CNN-based image filter to remove unsuitable
images. We formulated this task as a binary classification
problem and manually annotated a subset for training and
testing. Fig. 2 shows examples of positive and negative
instances. The positive instances have a fully-visible indi-
vidual in the photos; the negative instances are photos that
contain a single category, body parts, individuals, animals,
illustrations, and distorted images. Since our task includes
color prediction, black-and-white images are also considered
as negative instances. To train and evaluate this image fil-
tering task, we annotated 5,850 images and then split them
into 3,500 training images (positive: 1,509, negative: 1,991),
350 validation images (positive: 168, negative: 182), and
2,000 test images (positive: 850, negative: 1,150).

FIGURE 2. Examples of positive and negative instances (suitable and
unsuitable images).

To construct the image filter, we used the training set to
fine-tune a VGG16 model [31] pretrained on the ImageNet
dataset. We adopted the stochastic gradient descent (SGD)
optimizer with a learning rate of 0.00005 for parameter
learning and also applied data augmentation for fine-tuning.
The validation set was used for choosing the best model.
Our final model achieved an accuracy of 89.75% on the
test set. This image filter can effectively filter out most of
the unsuitable images with a precision of 91.48%, a recall
of 90.61%, and an F1-score of 91.04%. After applying
this model to all crawled images, we filtered out improper
images and retained 322,198 images. Among those retained,
64.2% are female, and 35.8% are male. Although the number
of female images is about two times the number of male ones,
we do have a sufficient number of images to analyze street
fashion by gender. Also, 89.1% of the users in RichWear are
from Japan, and more than 90% are from Asia, providing us
a good data source from which to understand street styles
in Asia.

B. LABEL PREPROCESSING AND ANNOTATION
The user-provided clothing labels include pairs of category
and color in the form of category (color), such as Pants
(Black) and Jacket (White). We split the category (color) pair-
ing into category and color and combined similar categories.
For example, one-piece dress, shirt dress, pinafore dress, and
tunic are combined into the dress category. We also removed
some accessories, such as earrings and hats. We kept a total
of 36 classes that include the 12 colors and 24 categories that
are shown in Table 2.

TABLE 2. Clothing attributes in RichWear.

As discussed previously, user-provided clothing labels are
noisy and require manual verification. To create a subset of
images that contain verified labels, we instructed six experts
who live in Asia and have sufficient knowledge of Asian
fashion to manually annotate 4,368 images with correct color
and category labels. All images that went through manual
annotation were checked by the first author to ensure that
they are photos of fully-visible individuals suitable for model
training.

In addition, clothing pattern recognition can facilitate fash-
ion understanding. Therefore, we asked the annotators to
additionally annotate each of the 4,368 images with one
of the five pattern classes shown in Table 2. We trained
the annotators by showing them examples of images with
different clothing colors, categories, and patterns. We also
asked the annotators to practice annotating new images to
ensure their understanding of the annotation rules. After they
finished their tasks, the first author manually verified these
labels for quality assurance. The total annotation process took
more than six weeks. After manual annotation, each image
in the verified subset contains both noisy and human-verified
labels. We split the verified subset into 3,043 training images,
325 validation images, and 1,000 test images.

Fig. 3 shows the quality of the noisy labels for the verified
subset. The rate of labels positively verified is the proportion
of images with user-labeled classes that are verified by anno-
tators to actually belong to these classes. The rate of label
coverage is the proportion of images with verified classes that
were labeled as such by users. The quality of the noisy labels
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FIGURE 3. Quality of noisy labels. The class index contains 36 classes in the following order: black, gray,
white, beige, orange, pink, red, green, brown, blue, yellow, purple, top, t-shirt, shirt, cardigan, blazer,
sweatshirt, vest, jacket, dress, coat, skirt, pants, jeans, jumpsuit, kimono_yukata, swimwear, stockings,
shoes, sandals, boots, pumps, sneakers, scarf, and bag.

differs to some extent based on different classes, and the small
objects (e.g., stockings and shoes) have an especially low rate
of labels positively verified and of label coverage because
most users tend tomislabel or ignore them. Due to the noise in
every class, it is inappropriate to directly use the noisy labels
for further analysis without correction.

C. DATASET COMBINATION
To increase training size for better recognition performance,
we combined the training set of RichWear with a verified sub-
set of the Fashion550k dataset [5]. Fashion550k, which con-
tains 407,772 street fashion images with clothing attributes
in colors and categories complementary to RichWear, pro-
vides additional data for our tasks. Fig. 4 shows examples of
images from RichWear and Fashion550k. Our initial inspec-
tion suggests that there are inconsistencies and errors in the
5,300 images with verified labels in Fashion550k. As shown
in Fig. 5, some images contain the same clothing category but
have inconsistent labels, and some images have labels that are
inconsistent with their photos. To address this issue, a human
annotator spent four weeks manually correcting the verified
labels. We removed several accessory classes and merged
the original 66 into 36 classes. Likewise, we annotated each
image with one of the five pattern classes. This process gave
us 4,307 corrected images from Fashion550k. We combined
these images with the training set of RichWear to create an
augmented training set containing 7,350 images and then
used the augmented training set in the subsequent model
training process. We discuss the effect of dataset combination
on recognition performance at the end of Section V.

IV. PROPOSED METHOD
We propose the Fashion Attributes Recognition Net-
work (FARNet) to simultaneously recognize three types of
clothing attributes, including colors, categories, and patterns,
in noisy-labeled images. FARNet contains two main compo-
nents built on top of a CNN image feature extractor. The first

FIGURE 4. Examples of images from RichWear and Fashion550k.

FIGURE 5. Examples of inconsistency (left) and errors (right) in the
verified labels of Fashion550k.

component is a Noise Correction Network extended based on
the model of Inoue et al. [5]. This network corrects noisy
labels for images and generates corrected multi-labels of
clothing colors and categories. The second component is a
Pattern Classification Network that classifies each image into
one of the five clothing patterns. We trained FARNet using
the MTL framework. The benefit of MTL compared with
single-task learning (STL) is that it allows for exploration of
latent connections and facilitates knowledge sharing between
tasks, leading to an overall improvement of model perfor-
mance [21]. We describe our model architecture and the loss
functions in this section.

A. MODEL ARCHITECTURE
Fig. 6 presents the overall architecture of the proposed
FARNet, which contains a Noise Correction Network g and
a Pattern Classification Network h that are built on top of
a base CNN f . For each street fashion image I , there are a
set of noisy labels y, a set of human-verified labels v, and
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FIGURE 6. The overall architecture of FARNet.

corresponding image features f (I ) that are extracted from f .
The noisy label vector and the verified label vector are sparse
binary vectors. The two inputs of our networks, f (I ) and y, are
separately projected into a 512-dimensional embedding and a
16-dimensional embedding. The network g is trained to out-
put the 36-dimensional corrected label vector c that represents
the predicted attributes of clothing colors and categories, and
the network h learns to predict the five-dimensional clothing
pattern vector p for the image I .

1) THE NOISE CORRECTION NETWORK
The Noise Correction Network g learns a structure by map-
ping the noisy labels y to the human-verified labels v condi-
tional on visual information f (I ). The human-verified labels
v are used as the ground truth to supervise the Noise Cor-
rection Network. The input of the Noise Correction Network
is the concatenation of the low-dimensional embeddings of
f (I ) and y. This network contains three linear hidden lay-
ers of 512 units each and one output layer that is followed
by the sigmoid function. We add a leaky rectified linear
unit (LeakyReLU) layer and a batch normalization (BN)
layer [32] after each linear hidden layer. LeakyReLU and
BN can address the saturation problem and the vanishing
gradients during training. BN also regularizes the network
for avoiding overfitting and removes the need for a dropout
layer [33]. Here we use a skip connection that adds the noisy
labels y to the output values as the final output. To obtain
valid corrected labels c, we clip the final output to an interval
of [0, 1]. If g′ is the residual module of g before adding y to the
output values, the Noise Correction Network can be denoted
as:

c = max(min(g′(f (I ), y)+ y, 1), 0). (1)

Although the Noise Correction Network is similar to the
label cleaning network of Inoue et al. [5], there are several
noticeable differences between the two models. First, our
Noise Correction Network has three hidden layers and is
deeper than the original label cleaning network with one

hidden layer. Because deeper neural networks can learn
higher-level features [34], our network benefits from the
deeper architecture. Second, we have adopted a LeakyReLU
layer and a BN layer after each hidden layer to reduce
overfitting. By contrast, Inoue et al. [5] used rectified linear
unit (ReLU) and BN after the hidden layer. The ReLU layer
performs a threshold operation. However, the model learning
process may lead to nodes that always receive negative inputs
and thus never activate. These nodes contribute to neither the
gradient nor the output and are often referred to as ‘‘dead.’’
This is known as the dying ReLU problem [35]. To avoid
this problem, we use LeakyReLU, which also performs a
threshold operation but additionally allows a small, non-zero
gradient for negative inputs. The weights of those nodes that
are not active with ReLU are adjusted in model training.
Third, we have added a sigmoid activation function at the
output layer. After applying the sigmoid, we convert the
output of the Noise Correction Network into a value between
0 and 1 before adding y, which leads to better prediction
performance.

2) THE PATTERN CLASSIFICATION NETWORK
FARNet also contains a Pattern Classification Network h,
which utilizes visual information f (I ) to predict the clothing
pattern p for a street fashion image. The human-verified
labels v are used as the ground truth to supervise the Pattern
Classification Network. The low-dimensional embedding of
f (I ) is the only input of this network that consists of two
linear hidden layers of 256 units each and one output layer.
A softmax function is applied to the output layer to normalize
the outputs as predicted probabilities for the pattern classes.

To prevent overfitting, we add a dropout layer [33] after
each linear layer. Although both BN and dropout can reg-
ularize the network and reduce overfitting, combining them
together often results in a worse predictive performance than
if they had been used separately [36], and thus each main
component is equipped with its own appropriate regular-
izer for the best performance. Finally, the predicted pattern
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labels p can be utilized for subsequent fashion trend analysis.
The Pattern Classification Network can be expressed as:

p = h(f (I )). (2)

B. LOSS FUNCTIONS
FARNet is designed to jointly learn the label noise correction
task and the pattern classification task in a MTL framework.
To train the FARNet, we jointly optimize the correction loss
of the Noise Correction Network and the classification loss
of the Pattern Classification Network. The total loss function
is expressed as:

LossT = λLossC + (1− λ)LossP, (3)

where LossC is the correction loss, LossP is the classification
loss, and λ is the weight to control the trade-off between the
two loss functions.

1) THE CORRECTION LOSS
The correction loss for the Noise Correction Network is the
binary cross-entropy loss, which can be defined as:

LossC = −
N∑
i=1

S1∑
j=1

vi,j · log(ci,j)+ (1− vi,j) · log(1− ci,j),

(4)

where N is the total number of training instances, S1 is the
total number of color and category classes, ci,j is the predicted
probability of a class j, and vi,j is the verified label (the
ground truth) of that class. The Noise Correction Network
is supervised by the verified labels of clothing colors and
categories.

We have chosen the binary cross-entropy loss rather
than the L1-distance loss utilized by Inoue et al. [5]. The
L1-distance loss between the predicted probability ci,j and the
verified label vi,j is defined as:

L1_distance =
N∑
i=1

S1∑
j=1

|ci,j − vi,j|. (5)

Compared to L1-distance, binary cross-entropy is able to
enlarge the loss more as c diverges from v, which can give
incorrect predictions more penalty. Therefore, we believe
that the binary cross-entropy is more suitable for our Noise
Correction Network.

2) THE CLASSIFICATION LOSS
The Pattern Classification Network uses categorical
cross-entropy loss:

LossP = −
N∑
i=1

S2∑
j=1

vi,j · log(pi,j), (6)

where N is the total number of training instances, S2 is the
total number of pattern classes, pi,j is the predicted probability
of a pattern class j, and vi,j is the verified label (the ground
truth) of that class. The Pattern Classification Network is
supervised by the verified labels of clothing patterns.

V. EXPERIMENTS
We trained our FARNet on the 7,350-image training set that is
the combination of the verified training set of RichWear and
manually-corrected samples of Fashion550k. The validation
set and the test set contain 325 images and 1,000 images,
respectively, from the verified subset of RichWear. The
remaining parts of the RichWear dataset were used for the
street fashion trend analysis. In addition to the MTL frame-
work, we also separately trained our Noise Correction Net-
work and Patten Classification Network in STL to evaluate
their performance. In this section, we present the metrics
used for performance evaluation. We then introduce several
baseline methods for comparison with our model, followed
by the experimental details. Finally, we report and discuss the
experimental results.

A. EVALUATION METRICS
Following other related studies [5], [23], [37], we adopt
the mean average precision (mAP) as the evaluation metric
for multi-label color and category predictions. We obtain
mAP by taking the average over all average-precision
for each class (APcl). The definition of APcl follows the
widely-adopted standard defined in the PASCAL Visual
Objects Classes (VOC) Challenge [38], [39]. Given one class,
the APcl summarizes the shape of the precision-recall curve
that is derived from the ranked outputs (i.e., predicted proba-
bilities) of amodel in descending order. TheAPcl is expressed
as:

APcl =
∑

k∈{1,2,...N }

Preck,r ·1Reck , (7)

where N is the total number of predictions, and k is the
retrieved rank, from 1 toN , retrieving from the largest output.
At each rank (k), there are corresponding precision and recall
values. Reck is recall at rank k , and 1Reck is the difference
between Reck and Reck−1. Preck,r is precision at rank k , and
the maximum precision of all recall values ≥ r is used for a
level of recall r to ensure the precision-recall curve decreases
monotonically. Then mAP can be formulated as:

mAP =
1
S1

S1∑
cl=1

APcl, (8)

where S1 is defined as in Equation (4). For clothing pattern
prediction, we choose accuracy to evaluate the performance
of single-label classification. Accuracy is the fraction of pre-
dictions that a model predicts correctly.

B. BASELINES
We compare FARNet with several baseline methods, includ-
ing that proposed by Inoue et al. [5]. We focus on comparing
our Noise Correction Network with these baseline methods,
the details of which are described as follows:

1) Inoue et al.: We compare our model with the label
cleaning network of Inoue et al. [5] that is similar to
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TABLE 3. Performance of baselines and our methods.

our Noise Correction Network. This baseline uses the
L1-distance loss in Equation (5).

2) Noisy labels as predictions: This baseline directly
takes the noisy labels of the test set as predictions for
performance evaluation. There are no models trained in
this baseline. This naive approach indicates the useful-
ness of the noisy labels.

3) Noisy labels as target: This method uses the noisy
labels of the training set to supervise the base CNN
and the Noise Correction Network. That is, we use the
noisy labels as the ground truth to train our model and
then apply the trained model to the test set to evaluate
the performance. The result of this baseline can be
interpreted as the best case of training directly on the
noisy labels.

4) No visual information: In this baseline, the only inputs
to the Noise Correction Network are the noisy labels
without any image features. This baseline provides
noise correction performance without the help of visual
information. The structure used here is identical to the
Noise Correction Network except for fewer neurons in
the linear hidden layers.

C. EXPERIMENTAL DETAILS
We have chosen ResNet50 [34] as the architecture for the
base CNN because this residual network is easy to opti-
mize and able to gain accuracy from its deep architecture.
To obtain better quality of image features for our tasks,
we use the training set to fine-tune ResNet50, which was
pretrained on the ImageNet dataset. Then we employ the
base CNN to extract the 2,048-dimensional feature vectors
for all images in our dataset. In the fine-tuning process,
data augmentation, including horizontal flipping and random
cropping, is applied to the training set. We also apply center
cropping to the validation set and the test set. All images we
use here are resized to 256 × 256 pixels and then cropped to
224 × 224 pixels.

To overcome the potential overfitting problem during
model training, we use the validation set to perform early
stopping and to find the best model. We use RMSprop opti-
mizer with a learning rate of 0.00001 for fine-tuning the base
CNN and then Adam with a learning rate of 0.00005 for
training the two main networks of FARNet. We also apply
a learning rate decay of 0.5 after 20 epochs with no improve-
ment in the training process. The hyperparameter λ in the
FARNet loss function is 0.5.

D. EXPERIMENTAL RESULTS
We trained each baseline separately following the training
process of our model. Note that all baselines are STL meth-
ods. Table 3 summarizes the performance of the baselines
and our methods. Among all STLmethods, our Noise Correc-
tion Network (STL) achieves the best performance on noise
correction for color and category labels. Notably, our Noise
Correction Network (STL) outperforms the label cleaning
network of Inoue et al. by 7.19 percentage points. Moreover,
the ‘‘noisy labels as target’’ method has the worst perfor-
mance among all baselines. This means that using noisy
labels as the ground truth to train the model is inappropriate.
The Noise Correction Network (STL) significantly outper-
forms the ‘‘no visual information’’ method, which implies
that label noise correction greatly benefits from the help
of visual information. Finally, we compare the performance
within our methods and find that there is not a large dif-
ference in the performance of pattern classification between
STL (79.9%) and MTL (79.8%), but MTL indeed improves
the performance on noisy label correction from 66.98% to
71.33%. Through this experiment, we demonstrate that MTL
can noticeably improve the generalization performance of
fashion attribute recognition tasks.

To further analyze our design, we compare the per-
formance among different model structures in Table 4.
The ‘‘original’’ model is our Noise Correction Network, and
the ‘‘using ReLU’’ model is the first variant. Following the
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TABLE 4. Comparison of performance between different model structures.

FIGURE 7. Comparison of APcl for clothing color and category attributes.

example set by Inoue et al. [5], it uses ReLU after each linear
hidden layer instead of LeakyReLU. The second variant is the
‘‘without sigmoid’’ model that omits the sigmoid function at
the output layer as in the model proposed by Inoue et al. [5].
In the third variant, the original binary cross-entropy loss
is replaced by the L1-distance loss of Inoue et al. [5].
We show that using ReLU after each linear hidden layer
hurts the performance of our model. Also, omission of the
sigmoid function at the output layer sharply reduces mAP
of our model; applying sigmoid significantly improves the
noise correction performance by 22.25 percentage points.
Finally, if we replace the binary cross-entropy loss with the
L1-distance loss, the model performance deteriorates.

We present the comparison of APcl for clothing color and
category attributes in Fig. 7, which is sorted in descending
order of APcl of FARNet. Obviously, FARNet surpasses
all compared baseline methods in most classes. Moreover,
three-fourths of the classes achieve APcl over 60% when
FARNet is used. This reveals that our proposed method
can correct noisy labels and predict the color and category
attributes well. As for the performance difference between
classes, there are at least three potential influence factors. The
first factor is the number of training instances in the class. The
classes with larger numbers of training instances on average
have a higher APcl , as demonstrated in Section C of the
supplemental material. The second factor is the noisy label
quality, and we report its influence in the next subsection.
The last factor is the visual appearance (e.g., size and shape)
of the class. The classes with smaller visual appearances
usually have worse recognition performance because of little

filtered information at the very top layers of the model [40],
[41]. For example, stockings on average occupies 1.89% of
visible pixels in the training images, compared to 7.09%
of visible pixels for jeans and 4.28% for cardigan, and the
model performance of stockings is inferior to that of jeans
and cardigan.

Fig. 8 shows the similar confusion matrices for pattern
prediction of MTL and STL. We observe that the MTL
method can predict plaid slightly better than the STLmethod.
However, the images that contain small patterned objects tend
to be classified as solid no matter what pattern is shown. For
example, an image that contains a bag with a plaid pattern is
usually classified as solid.

E. NOISY LABEL QUALITY AND DATASET COMBINATION
We further discuss whether the quality of the noisy labels and
combined datasets (i.e., RichWear+ Fashion550k) affect the
model performance. To investigate the effect of the quality
of the noisy labels on the performance, we adopt a method
similar to [23]. We first group the color and category classes
into six equally-sized groups that are ranked from very noisy
to very clean based on the average of the rate of labels
positively verified and the rate of label coverage. We then
compute the mAP improvement over the third baseline (i.e.,
noisy labels as target) for each quality group. We provide the
performance improvement for all classes in Section C of the
supplemental material. Fig. 9 shows the mAP improvement
with respect to the noisy labels’ quality. FARNet has effec-
tive noise correction and performance improvement for all
levels of noisy label quality. Among the six quality groups,
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FIGURE 8. Confusion matrices for clothing pattern prediction.

FIGURE 9. Performance improvement with respect to the quality of the
noisy labels.

the very noisy group has the largest improvement, which
shows our model’s potential to correct the label noise for very
noisy classes. In contrast, the very clean group classes have
limited room to gain performance improvement because the
user-provided labels of these classes are of high quality.

Intuition suggests that a larger training dataset will always
be better, and our result in Fig. 10 is consistent with this
intuition. Training that uses a combination of RichWear and
Fashion550k achieves better performance than that which
uses RichWear alone. However, the benefit is relatively
small. The accuracy for pattern recognition increases by
1.7 percentage points to 79.8% when Fashion550k is added
to the training set. The effect is similar in color and category
recognition. In fact, training on RichWear alone is enough
to significantly surpass all compared baselines trained on the
combined datasets.

While Fashion550k primarily contains street photos from
the United States and Europe, it contains street fashion
images with clothing attributes in colors and categories that
are complementary to RichWear, as mentioned previously.
The augmentation of street fashion images increases train-
ing samples and provides additional information during the
training process, reducing overfitting and leading to better
recognition performance. Therefore, training our model by

FIGURE 10. Comparison of FARNet model performance when trained on
RichWear and on RichWear + Fashion550k.

leveraging the manually-corrected images from Fashion550k
is consistent with our goal.

VI. STREET FASHION TREND ANALYSIS
In this section, we utilize the fine-grained clothing attributes
predicted by our proposed FARNet to analyze street fashion
trends from 2017 to 2019. We attempt to find the popularity
of clothing colors and patterns in each season. In addition,
we perform clustering on the images of RichWear to group
visually similar images for street style exploration. Notably,
the street fashion trends reported in previous studies focused
on American and European styles, while our analysis focuses
on Asian fashion.

A. COLOR AND PATTERN TRENDS
We applied our trained model on the full RichWear dataset
and collected predicted clothing attributes for street fashion
trend analysis. The clothing color trends (normalized between
0 and 1 using min-max normalization; x−min(x)/max(x)−
min(x)) and the color frequency distribution are shown
in Fig. 11. It is not surprising that clothing color trends usually
vary with season. Black and white are the most popular over-
all colors, regardless of season. Bright colors, such as white
and pink, appear more frequently in spring and summer than
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FIGURE 11. Clothing color trends and frequency distribution.

FIGURE 12. Clothing pattern trends and frequency distribution.

in autumn and winter, when darker colors like black, gray,
and brown are more popular. While beige becomes popular
after 2018, blue gradually goes out of fashion in 2019.

Fig. 12 plots the clothing pattern trends (normalized
between 0 and 1 using min-max normalization) and the pat-
tern frequency distribution. We exclude solid here because
we focus on trends related to patterned clothing. It is evident
that the popularity of individual patterns also changes from
season to season. Striped is themost popular pattern in spring,
while floral print trends positively in summer. Except for
autumn 2017, people wear more plaid clothing in autumn and
winter. Compared with other patterns, spotted is less popular,
but it also exhibits a seasonal variation.

B. IMAGE CLUSTERING
To discover Asian street styles from 2017 to 2019, we clus-
tered the images of our RichWear dataset, hypothesizing
that the visually-correlated images in a cluster may reveal a
common street style. The representations used in the cluster-
ing analysis are the 2,048-dimensional latent image features
extracted from the last layer of the base CNN and normalized
by L2-normalization.We considered several common cluster-
ing algorithms, including Gaussian mixture model (GMM),
K-means, agglomerative hierarchical clustering (AHC), and
density-based spatial clustering of applications with noise
(DBSCAN). We fine-tuned the number of clusters for each
algorithm except for DBSCAN, which does not require this

input. To determine the most appropriate clustering algorithm
for our analysis, we developed a human evaluation method
named ‘‘image intrusion task’’ that is inspired by the ‘‘word
intrusion task’’ proposed by [42].

Specifically, let xi denote the 2,048-dimensional feature
vector; GMM assumes that the observed xi is generated from
a mixture ofM component Gaussian densities [43]:

p(xi|wm,µm, 6m) =
M∑
m=1

wm g(xi|µm, 6m), (9)

where wm is the mixture weight with the constraint of∑M
m=1 wm = 1, g(·) is the Gaussian density, µm is the mean

vector, and 6m is the covariance matrix. We use GMMs
with full covariance matrices, so each component has its own
general covariance matrix.

To select the number of clusters, we used the Bayesian
Information Criterion (BIC) to determine M for GMM. The
BIC is defined as −2 ln(L̂) + d · ln(N ), where L̂ is the
maximum value of the likelihood function, d is the number
of free parameters to be estimated, and N is the sample size
of data. The likelihood of a GMM increases monotonically
with the number of components. We chose the number of
clusters where the change of the slope of BIC curve is the
largest, so there is no much information gain from increasing
the number of clusters. K-means and AHC are not associated
with likelihood, so we adopted the silhouette coefficient [44]
to determine the number of clusters.
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In order to choose the most appropriate clustering method
for subsequent analysis, we developed the image intrusion
task. The image intrusion task assumes that better clustering
results aremore cohesive in terms of clothing similarity. In the
image intrusion task, the participants were presented with six
randomly-ordered images, and they were instructed to select
an image that is ‘‘out of place’’ in terms of clothing similarity.
We asked participants to ignore image backgrounds, human
poses, or anything else irrelevant to clothing properties.

Fig. 13 presents an example of the task. Among the six
images, the character in Image 3 is wearing pants, while the
characters in other images are wearing skirts. Image 3 is
clearly out of place and is the intruder to this set of images.
We noticed in our preliminary experiments that participants
tend to randomly select an intruder if the set of images lack
clothing coherence.

FIGURE 13. An example of the image intrusion task. Image 3 is the
intruder to this set of images.

To prepare a set of images to present to the participants,
we first compute the centroid of a cluster and randomly
select five of K images nearest that centroid (K = 12).
We then randomly select a different cluster and add one more
image I ′ from this cluster to form a set of six. The image I ′

is also selected randomly from among K images closest to its
centroid. Using this approach, we construct a set of six images
for each cluster that is generated by the above-mentioned
clustering algorithms.

We obtain the image intrusion score for a clustering algo-
rithm by computing the average proportion of clusters in
which participants correctly identified intruders. Intuitively
speaking, if a clustering algorithm generates more cohesive
clusters, then it should be easier for human participants to
correctly identify the intruding images. As a result, the higher
image intrusion score indicates better clustering performance.
For this task, we recruited 36 participants, all of whom com-
pleted several sets of tutorial examples before engaging the
task.

Table 5 summarizes the image cluster evaluation of all
images in the RichWear dataset. The second column lists
the number of clusters for each clustering algorithm. The
number of clusters derived from DBSCAN is 45, which is
the highest among all clustering algorithms. GMM,K-means,
and AHC have 31, 20, and 7 clusters, respectively. The image
intrusion task shows that GMM has the most cohesive clus-
tering results with a score of 0.90. The score means that,
on average, the participants can correctly identify intruding
images in 90% of clusters. DBSCAN, on the other hand, is the
worst in terms of cluster coherence. The score is only 0.16,

which means that the participants can only correctly identify
intruding images in 16% of clusters. K-means and AHC have
a score of 0.60 and 0.41, respectively. Both are behind GMM
by a large gap.

Based on the results of the human evaluation method,
we adopted GMM to explore Asian street fashions by gath-
ering visually-correlated images in RichWear. Based on the
BIC criterion, we set M = 16 for clustering by year to dis-
cover fine-grained fashion trends. Moreover, we set M = 31
for clustering on the full dataset, as just mentioned, to per-
ceive the temporal dynamics of identified street styles.

1) FASHION TRENDS
We clustered the street fashion images in each subset of
RichWear by year in order to discover fashion trends. Except
for a few noisy clusters that are disturbed by human posing or
patterned backgrounds, most clusters contain the images with
one clear fashion. Table 6 shows the street fashion trends in
Japan and other Asian areas from 2017 to 2019. We discover
that some common street fashions last for three years, such
as long outerwear and black clothing. In contrast, some street
fashions only appear in a single year, such as women’s over-
sized clothes in 2017, shirt and shirt jacket in 2018, and maxi
skirt and maxi dress in 2019. We provide more clustering
results in Section A of the supplemental material.

In addition, user-created hashtags on the fashion website
represent common styles among users. To find the relevant
styles for a street fashion, we use the following approach:
(1) We count the five most common hashtags of the images
within a cluster, (2) we count hashtags with the same mean-
ing only once, (3) we omit the hashtags of clothing cate-
gories, like #Dress and #Sneakers, and (4) we translate a few
Japanese hashtags into English and give the original hash-
tags in parenthesis. Finally, we show the five most common
hashtags for each street fashion in Table 6. For example,
the most relevant style hashtag associated with long out-
erwear is #AdultCasual. We observe that the #Simple and
#AdultCasual hashtags are generally the most popular for
street fashions.

2) STYLE DYNAMICS
We attempt to identify some street styles from our dataset
and to find the temporal dynamics of these styles. For street
style dynamics discovery, we perform clustering on the full
RichWear dataset. After clustering, we can identify clusters
that reveal dominant clothing styles. There are also several
noisy clusters that contain no common style, which are dis-
turbed by human posing or patterned backgrounds. A few
popular clothing styles appear in more than one cluster, such
as jeans and other denim clothes. We choose only one cluster
among those with the same style to analyze its style dynam-
ics. In addition, although some clusters contain images with
a dominant clothing style, such as pants coordinates, their
style dynamics do not show significant seasonal fluctuations.
We thus exclude the dynamics of these regular clothing styles
and finally choose seven clusters to present their temporal
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TABLE 5. Objective and Human Evaluation of Image Clusters.

TABLE 6. The street fashion trends and their relevant style hashtags from 2017 to 2019.

dynamics.We provide image examples of the clustering result
in Section B of the supplemental material. The users’ gender
information is also utilized to identify the differences between
men’s and women’s street fashion trends.

Fig. 14 shows the street style dynamics results. Each style
has seasonal fluctuations in frequency that reveal popularity

and unpopularity over time as well as several interesting
observations: (1) Long outerwear is more popular in win-
ter than in other seasons, but short outerwear with pants is
popular not only in winter but also in spring and autumn.
Additionally, long outerwear is more popular among women,
while short outerwear with pants is more popular among

49202 VOLUME 9, 2021



F.-H. Huang et al.: From Street Photos to Fashion Trends: Leveraging User-Provided Noisy Labels

FIGURE 14. Street style dynamics.

men. (2) People wear more jeans and other denim clothes
in spring. Men wore more jeans and other denim clothes
in 2019, while women wore less after 2018. (3) A-line skirt,
dress, and culottes are popular in summer, especially in the
summer of 2018.5 (4) T-shirt and sweatshirt have spikes
in frequency during the summer, and seasonal variation is
more obvious for men than for women. (5) Black clothing
has become increasingly popular, while patterned clothing
shows a declining trend. Men wear black clothing as often
as women; however, they wear patterned clothing much less
than women.

5Since A-line skirt, dress, and culottes are women’s clothing, we do not
discuss this trend by gender.

Compared to previous street fashion studies [4], [8], [9],
we have discovered unique street fashion trends in Japan and
other Asian areas. We have also integrated the user-created
hashtags in our dataset to further understand relevant styles
for street fashions. Moreover, we have successfully identi-
fied street style dynamics and differences between men’s
and women’s fashion styles that have not been explored in
previous studies.

VII. CONCLUSION
This study aimed to explore Asian street fashion by creating
a novel fashion recognition architecture and a large-scale
image dataset with user-provided noisy labels, and it con-
tributes to the existing literature in three areas. First, this
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study developed a new street fashion dataset named Rich-
Wear, which contains 322,198 street fashion images with
upload date, users’ gender and country, clothing brands,
and user-created hashtags. In addition to user-provided
noisy labels, we also created a 4,368-image subset with
expert-verified labels for three types of clothing attributes.
In particular, RichWear focuses on street styles in Japan and
other Asian areas, providing a good data source for Asian
fashion understanding.

For fashion recognition, we have proposed a multi-task
neural network, FARNet, which can leverage noisy labels
and simultaneously recognize multiple clothing attributes.
This network facilitates our street fashion exploration in the
large-scale dataset collected from a social media site. The
Noise Correction Network in FARNet is based on an existing
network, but it more effectively corrects for noisy labels.
It achieves better performance (71.33%) than the compared
baselines (55.46%–59.79%). Moreover, our empirical results
show that MTL, when compared to STL, can noticeably
improve generalization performance of attribute recognition.

Finally, by using both supervised and unsupervised learn-
ing methods, we have documented interesting street fashion
trends in Asia from 2017 to 2019. We have also observed
significant seasonal dynamics for men’s and women’s street
styles that have not been explored in previous studies.
In future work, we plan to incorporate product and brand
information to further refine the fashion trend analysis.
We are interested in the mercurial popularity of products and
brands, a deeper understanding that may help us predict the
rise and fall of a particular product, brand, or style.
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