We are observers in the development of a new ANSI accredited electronic equipment recycling standard produced with the leadership of NSF International; a Michigan-based standards developer (founded at the University of Michigan) not far from our own offices and one of the largest in the world.
The electronic recycling space is growing quickly — reaching far upstream the value chain into how electronic equipment is designed in the first place. An overview of the project is available in the link below:
This standard moved swiftly to market under NSF International’s continuous maintenance process. We bring it to the attention of the education facilities industry as a recommendation for lowering #TotalCostofOwnership. Participation as a User interest in American national standards development reduces “wheel reinvention” in which many recycling workgroups unnecessarily start from scratch, eliminates the need to attend costly workshops hosted by trade associations and significantly minimizes destructive competition.
This title is on the standing agenda of our Redivivus colloquium. Since our interest lies primarily with electrotechnology we collaborate with the IEEE Standards Association. See our CALENDAR for the next online meeting; open to everyone.
The heating and cooling requirements of K-12 schools, college and university educational, medical research and healthcare delivery campuses are a large market for boiler pressure vessel manufacturers, installers, maintenance personnel and inspectors. The demand for building new, and upgrading existing boilers — either single building boilers, regional boilers or central district energy boilers — presents a large market for professional engineering firms also. A large research university, for example, will have dozens, if not well over 100 boilers that heat and cool square footage in all climates throughout the year. The same boilers provide heating and cooling for data centers, laundry operations, kitchen steam tables in hospitals and dormitories.
“…The International Boiler and Pressure Vessel Code establishes rules of safety — relating only to pressure integrity — governing the design, fabrication, and inspection of boilers and pressure vessels, and nuclear power plant components during construction. The objective of the rules is to provide a margin for deterioration in service. Advancements in design and material and the evidence of experience are constantly being added…”
Many state and local governments incorporate the BPVC by reference into public safety regulations and have established boiler safety agencies. Boiler explosions are fairly common, as a simple internet search on the term “school boiler explosion” will reveal. We linked one such incident at the bottom of this page.
University of Michigan Central Heating Plant
The 2023 Edition of the BPVC is the current edition; though the document is divided into many sections that change quickly.
Two characteristics of the ASME standards development process are noteworthy:
Only the proposed changes to the BPVC are published. The context surrounding a given change may be lost or not seen unless access to previous version is available. Knowledgeable experts who contribute to the development of the BPVC usually have a previous version, however. Newcomers to the process may not.
The BPVC has several breakout committees; owing to its longer history in the US standards system and the gathering pace of complexity in this technology.
We unpack the ASME bibliography primarily during our Mechanical, Plumbing and Energy colloquia; and also during our coverage of large central laundry and food preparation (Kitchens 100) colloquia. See our CALENDAR for the next online meeting, open to everyone.
Education communities are stewards of hundreds of commercial-class kitchens in which the proximate risk of electrical energy must be managed — water spills and grease, fires, worn electrical cords on countertop equipment, faulty wiring or equipment, damaged outlets or connectors, and improperly used or damaged extension cords among them. The safety and sustainability rules for this occupancy class is identified as Assembly Group A-2 in Section 303 of the International Building Code
We explore recent transcripts of expert committee activity in NEC Article 210 and provide links to video commentary.
Public comment on the Second Draft of the 2026 NEC will be received until April 18. We typically coordinate our effort with the IEEE Education & Healthcare Facilities Committee. The workspace set up for generating proposals can be found in the link below.
We examine transcripts to track technical specifics that apply to student accommodation kitchens (on and off campus), university-affiliated hospital kitchens and sport arenas.
After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110, the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.For almost all athletic facilities, the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety. For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site. Sometimes concepts to meet both life safety and business objectives merge.
During hockey season the document linked below provides information to illumination designers and facility managers:
Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States. We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises. We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.
See our CALENDAR for our next colloquium on Sport facility codes and standards. We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.
Issue: [15-138]*
Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics
Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs
LEARN MORE:
[1] Illumination Engineering Handbook
[2] IEEE 3001.9 Recommended Practice for Design of Power Systems for Supplying Lighting Systems for Commercial & Industrial Facilities
[3] IEEE 3006.1 Power System Reliability
* Issue numbering before 2016 dates back to the original University of Michigan codes and standards advocacy enterprise
Extinguishing A fire at the Equitable Building skyscraper in New York City, January 1912.
The parent title in the NFPA catalog — NFPA 1 — sets standards for fire lanes by addressing them within various chapters and sections; depending on the specific aspects of fire protection, access, and safety they pertain to. Here are some of the key sections and chapters in NFPA 1 that may include relevant information regarding fire lanes:
Chapter 18: New High-Rise Buildings: This chapter may include requirements related to access for firefighting operations, which could encompass provisions for fire lanes.
Chapter 20: New Educational and Day-Care Occupancies: Requirements related to access for emergency responders in educational facilities, including provisions for fire lanes, may be addressed in this chapter.
Chapter 22: Existing Educational and Day-Care Occupancies: Similar to Chapter 20, this chapter may contain provisions for existing educational facilities regarding fire protection and access.
Chapter 24: New Residential Board and Care Occupancies: Requirements for access and fire protection in residential board and care occupancies, including provisions for fire lanes, may be found in this chapter.
Chapter 30: New Mercantile Occupancies: This chapter may include provisions related to access and fire protection in mercantile occupancies, which could involve requirements for fire lanes.
Chapter 32: Existing Mercantile Occupancies: Similar to Chapter 30, this chapter may address requirements for existing mercantile occupancies, including provisions for fire lanes.
Since NFPA 1 covers a wide range of fire safety topics, including building design, fire protection systems, and emergency procedures, specific requirements related to fire lanes may be distributed throughout the document rather than consolidated in a single section. It’s important to carefully review the relevant chapters and sections of NFPA 1 to ensure compliance with applicable requirements for fire lane design, construction, and maintenance.
Best practice for determining snow zones, as the criteria for designating these zones can vary depending on factors such as geography, climate, population density, infrastructure, and available resources. However, municipalities typically develop their own criteria and guidelines based on these factors to create effective snow removal plans.
Common principles and factors that many municipalities consider when determining snow zones, as mentioned in the previous response. These include weather patterns, topography, traffic volume and patterns, residential density, critical infrastructure, public safety considerations, and feedback from residents and stakeholders.
Some municipalities may also adopt best practices and recommendations from organizations such as the American Public Works Association (APWA) or the National Association of City Transportation Officials (NACTO) to inform their snow removal planning processes. These organizations may offer guidance on snow zone designations, prioritization of routes, and effective snow removal techniques based on industry standards and research.
Ultimately snow zones respond to the specific needs and characteristics of each municipality, with the goal of efficiently managing winter weather events to ensure public safety and mobility.
Abstract: We address the problem of predicting whether a driver facing the yellow-light-dilemma will cross the intersection with the red light. Based on driving simulator data, we propose a stochastic hybrid system model for driver behavior. Using this model combined with Gaussian process estimation and Monte Carlo simulations, we obtain an upper bound for the probability of crossing with the red light. This upper bound has a prescribed confidence level and can be calculated quickly on-line in a recursive fashion as more data become available. Calculating also a lower bound we can show that the upper bound is on average less than 3% higher than the true probability. Moreover, tests on driving simulator data show that 99% of the actual red light violations, are predicted to cross on red with probability greater than 0.95 while less than 5% of the compliant trajectories are predicted to have an equally high probability of crossing. Determining the probability of crossing with the red light will be important for the development of warning systems that prevent red light violations.
Artist: Syd Mead | Photo Credit: United States Steel
We find town-gown political functionaries working to accommodate students traveling on micro-scooters. Several non-profit trade associations compete for “ownership” of some part of the economic activity associated with micromobility. One of several domain incumbents is SAE International. Here is how SAE International describes the micromobility transformation:
“…Emerging and innovative personal mobility devices, sometimes referred to as micromobility, are proliferating in cities around the world. These technologies have the potential to expand mobility options for a variety of people. Some of these technologies fall outside traditional definitions, standards, and regulations. This committee will initially focus on low-speed micromobility devices and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These may be device-propelled or have propulsion assistance. They are low-speed devices that have a maximum device-propelled speed of 30 mph. They are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This committee is concerned with the eventual utilization and operational characteristics of these devices, and how they may be safely incorporated in the transportation infrastructure. This committee will develop and maintain SAE Standards, Recommended Practices, and Information Reports within this classification of mobility. The first task of the committee will be to develop a taxonomy of low-speed micromobility devices and technologies. Currently, many of these terms are not consistently named, defined, or used in literature and practice. This task will also help refine the scope of the committee and highlight future work….”
Micromobility standards development requires sensitivity to political developments in nearly every dimension we can imagine.
This Recommended Practice provides a taxonomy and definitions for terms related to micromobility devices. The technical report covers low-speed micromobility devices (with a maximum device-propelled speed of 30 mph) and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These devices may be device-propelled or have propulsion assistance. Micromobility devices are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This Recommended Practice does not provide specifications or otherwise impose requirements of micromobility devices.
SAE standards action appears on the pages linked below:
SAE International is proud to announce the release of SAE J3400™ North American Charging Standard (NACS) Electric Vehicle Coupler Technical Information Report.
Apart from the rising level of discussion on vehicle-to-grid technologies (which we track more closely with the IEEE Education & Healthcare Facilities Committee) there is no product at the moment that business units in the education industry can comment upon. Many relevant SAE titles remain “Works in Progress”. When a public commenting opportunity on a candidate standard presents itself we will post it here.
We host periodic Mobility colloquia; SAE titles standing items on the agenda. See our CALENDAR for the next online session; open to everyone.
Because of the robustness of the environmental safety units in academia we place this title in the middle of our stack of priorities. Laboratory safety units are generally very well financed because of the significance of the revenue stream they produce. We place higher priority on standby power systems to the equipment and, in many cases, the subjects (frequently animals)
Chemical laboratory, Paris. 1760
We were advocating #TotalCostofOwnership concepts in this document before our work was interrupted by the October 2016 reorganization (See ABOUT). Some of that work was lost so it may be wise to simply start fresh again, ahead of today’s monthly teleconference on laboratory safety codes and standards. The scope of NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals is very large and articulated so we direct you to its home page.
Suffice to say that the conditions under which NFPA 45 may be applied is present in many schools, colleges and universities — both for instructional as well as academic research purposes. Some areas of interest:
Laboratory Unit Hazard Classification
Laboratory Unit Design and Construction
Laboratory Ventilating Systems and Hood Requirements
Educational and Instructional Laboratory Operations
We find considerable interaction with consensus documents produced by the ICC, ASHRAE and NSF International.
It is noteworthy that there are many user-interest technical committee members on this committee from the State University of New York, the University of Kentucky, West Virginia University, the University of Texas, University of California Berkeley and the University of Texas San Antonio; thereby making it one of only a few ANSI accredited standards with a strong user-interest voice from the education. Most of them are conformance/inspection interest — i.e. less interested in cost reduction — but they are present nonetheless. We pick our battles.
The 2023 revision is in an advanced stage of development and on the agenda of the June 2023 Technical Standards Agenda. It will likely be approved for release to the public later this year.
We always encourage direct participation. You may communicate directly with Sarah Caldwell or Laura Moreno at the National Fire Protection Association, One Batterymarch Park, Quincy, MA 02169-7471 United States. TEL: 1 800 344-3555 (U.S. & Canada); +1 617 770-3000 (International)
This standard is on the standing agenda of our periodic Laboratory standards teleconference. See our CALENDAR for the next online meeting; open to anyone.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T