Tag Archives: D4

Loading
loading..

Drivers facing the yellow-light-dilemma

Center for Digital Education | University of Michigan

 

Stochastic hybrid models for predicting the behavior of drivers facing the yellow-light-dilemma

Paul A. Green | University of Michigan

 Daniel Hoehener & Domitilla Del Vecchio | Massachusetts Institute of Technology

  

Abstract:  We address the problem of predicting whether a driver facing the yellow-light-dilemma will cross the intersection with the red light. Based on driving simulator data, we propose a stochastic hybrid system model for driver behavior. Using this model combined with Gaussian process estimation and Monte Carlo simulations, we obtain an upper bound for the probability of crossing with the red light. This upper bound has a prescribed confidence level and can be calculated quickly on-line in a recursive fashion as more data become available. Calculating also a lower bound we can show that the upper bound is on average less than 3% higher than the true probability. Moreover, tests on driving simulator data show that 99% of the actual red light violations, are predicted to cross on red with probability greater than 0.95 while less than 5% of the compliant trajectories are predicted to have an equally high probability of crossing. Determining the probability of crossing with the red light will be important for the development of warning systems that prevent red light violations.

CLICK HERE to order complete article

Inglenook

K-12 Schools with Fireplaces as a Library Focal Point

The home is the empire! There is no peace more delightful than one's own fireplace. - Marcus Tullius Cicero

"Firelight magnifies the soul of a room, and it is there that life unfolds in its purest form" -- Thomas HardyRobert Frost: "Some say the world will end in fire, some say in ice."

An inglenook is an intimate space typically found beside a fireplace. Inglenooks often have built-in seating or benches, providing a comfortable spot for people to gather around the warmth of the fire.  Originally inspired by cooking, but over time, they became more functional as spaces for relaxation, reflection, reading and socializing.

Today at the usual hour we examine that state of best practice literature for their safety and sustainability,

The codes, standards and guidelines that track accepted best practice:

ASME

ASME B31.9 – Building Services Piping

ASME B31.8 – Gas Transmission and Distribution Piping Systems

ASTM

ASTM E2726 – Standard Terminology Relating to Chimneys and Ventilation Systems

ASTM E2558 – Standard Test Method for Determining Particulate Matter Emissions from Fires in Wood-Burning Fireplaces

AGA

Natural Gas Transmission & Distribution

Environmental Protection Agency

EPA Emission Standards (for Wood Stoves)

Compliance Requirements for Residential Wood Heaters

ICC

International Building Code: Chapter 21 Masonry

International Fuel Gas Code

IEEE

A Dynamic Equivalent Energy Storage Model of Natural Gas Networks for Joint Optimal Dispatch of Electricity-Gas Systems

NFPA

NFPA 221 Standard for Chimneys, Fireplaces, Vents, and Solid Fuel-Burning Appliances

NFPA 10 Standard for Portable Fire Extinguishers

Underwriters Laboratories

UL 127 for factory-built fireplaces

UL 103 for chimney systems

United States Department of Energy

Fireplaces, Proper Ventilation for New Wood-Burning Fireplaces 

“Fire at Full Moon” 1933 | Paul Klee

Representative Specifications:

University of Vermont: Ignite Your Knowledge of Fireplace Safety

City of Chicago: Gas Distribution Piping Inside of Buildings

University of Rochester: Fire Place Safety

University of Michigan

Related:

Town Gas

 

Bollards

Winter Walk | Lynette Roberts

Pedestrian bollards protect walkways from vehicle intrusion, guide foot traffic, snow plows and can provide heating and illumination.   They should be positioned in front of energy utility services (such as natural gas and electrical power switchgear). at sidewalk entrances, crosswalks, and near pedestrian-heavy zones.  Join us today at 16:00 UTC when we examine best practice literature and a few construction details as time allows.

International & General Standards

ASTM F3016 – Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds.

ASTM F2656 – Standard Test Method for Crash Testing of Vehicle Security Barriers.

ASTM A53 / A500 – Standards for steel pipe and tubing used in bollard construction.

ISO 22343 – Vehicle security barrier standards.

U.S. Codes & Regulations

ADA Standards for Accessible Design – Ensures bollards do not create accessibility barriers.

IBC (International Building Code) – Covers structural requirements for bollards in buildings.

Vehicular Impact Protection – IBC Section 1607.8.3

Accessibility Considerations – IBC Chapter 11 & ANSI A117.1

NFPA 101 (Life Safety Code) – Addresses fire lane access and emergency egress.

DOT (Department of Transportation) Guidelines – Covers bollard placement in public roadways.

Local municipalities may have additional regulations governing bollard installation and safety compliance.

Vermont State University | Lamoille County

Related:

Standard Site Bollard Detail

Illuminated Bollard Riser similar to Pedestrian Light Pole Base 

Campus bollard lighting solution

Pathways 100

7th Edition (2018): Geometric Design of Highways & Streets

Wayfinding

Wayfinding and Signage Manual

Great Cities Begin With Sidewalks

Campus Micromobility

Artist: Syd Mead | Photo Credit: United States Steel

We find town-gown political functionaries working to accommodate students traveling on micro-scooters.  Several non-profit trade associations compete for “ownership” of some part of the economic activity associated with micromobility.   One of several domain incumbents is SAE International.   Here is how SAE International describes the micromobility transformation:

“…Emerging and innovative personal mobility devices, sometimes referred to as micromobility, are proliferating in cities around the world. These technologies have the potential to expand mobility options for a variety of people. Some of these technologies fall outside traditional definitions, standards, and regulations. This committee will initially focus on low-speed micromobility devices and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These may be device-propelled or have propulsion assistance. They are low-speed devices that have a maximum device-propelled speed of 30 mph. They are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This committee is concerned with the eventual utilization and operational characteristics of these devices, and how they may be safely incorporated in the transportation infrastructure. This committee will develop and maintain SAE Standards, Recommended Practices, and Information Reports within this classification of mobility. The first task of the committee will be to develop a taxonomy of low-speed micromobility devices and technologies. Currently, many of these terms are not consistently named, defined, or used in literature and practice. This task will also help refine the scope of the committee and highlight future work….”

Micromobility standards development requires sensitivity to political developments in nearly every dimension we can imagine.

University of Toledo

Specifically, we follow developments in SAE J3194: Taxonomy and Definitions for Terms Related to Micromobility Devices.  Getting scope, title, purpose and definitions established is usually the first step in the process of developing a new technical consensus product.   From the project prospectus:

This Recommended Practice provides a taxonomy and definitions for terms related to micromobility devices. The technical report covers low-speed micromobility devices (with a maximum device-propelled speed of 30 mph) and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These devices may be device-propelled or have propulsion assistance. Micromobility devices are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This Recommended Practice does not provide specifications or otherwise impose requirements of micromobility devices.

 

SAE standards action appears on the pages linked below:

SAE Standards Development Home Page

SAE Standards Works

 

Apart from the rising level of discussion on vehicle-to-grid technologies (which we track more closely with the IEEE Education & Healthcare Facilities Committee) there is no product at the moment that business units in the education industry can comment upon.   Many relevant SAE titles remain “Works in Progress”.  When a public commenting opportunity on a candidate standard presents itself we will post it here.

We host periodic Mobility colloquia; SAE titles standing items on the agenda.  See our CALENDAR for the next online session; open to everyone.

University of Michigan Ann Arbor

Issue: [19-130]

Category: Electrical, Facility Asset Management, Transportation

Colleagues: Mike Anthony, Paul Green, Jack Janveja, Richard Robben

 


 

LEARN MORE:

SAE International ABOUT

Inspiring a College Campus to Design, Create, and Build Green Small Engine Vehicles 2009-32-0107

All-Electric School Bus for Total Zero Emission

Fire Protection for Laboratories Using Chemicals

Because of the robustness of the environmental safety units in academia we place this title in the middle of our stack of priorities. Laboratory safety units are generally very well financed because of the significance of the revenue stream they produce.  We place higher priority on standby power systems to the equipment and, in many cases, the subjects (frequently animals)

Chemical laboratory, Paris. 1760

 

We were advocating #TotalCostofOwnership concepts in this document before our work was interrupted by the October 2016 reorganization (See ABOUT).   Some of that work was lost so it may be wise to simply start fresh again, ahead of today’s monthly teleconference on laboratory safety codes and standards.  The scope of NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals is very large and articulated so we direct you to its home page.

Suffice to say that the conditions under which NFPA 45 may be applied is present in many schools, colleges and universities — both for instructional as well as academic research purposes.  Some areas of interest:

  • Laboratory Unit Hazard Classification
  • Laboratory Unit Design and Construction
  • Laboratory Ventilating Systems and Hood Requirements
  • Educational and Instructional Laboratory Operations

We find considerable interaction with consensus documents produced by the ICC, ASHRAE and NSF International.

It is noteworthy that there are many user-interest technical committee members on this committee from the State University of New York, the University of Kentucky, West Virginia University, the University of Texas, University of California Berkeley and the University of Texas San Antonio; thereby making it one of only a few ANSI accredited standards with a strong user-interest voice from the education.  Most of them are conformance/inspection interest — i.e. less interested in cost reduction — but they are present nonetheless.  We pick our battles.

The 2023 revision is in an advanced stage of development and on the agenda of the June 2023 Technical Standards Agenda.  It will likely be approved for release to the public later this year.

We always encourage direct participation.  You may communicate directly with Sarah Caldwell or Laura Moreno at the National Fire Protection Association, One Batterymarch Park, Quincy, MA 02169-7471 United States.  TEL: 1 800 344-3555 (U.S. & Canada); +1 617 770-3000 (International)

This standard is on the standing agenda of our periodic Laboratory standards teleconference.  See our CALENDAR for the next online meeting; open to anyone.

Issue: [19-60]

Category: Prometheus, Laboratory, Risk

Colleagues: Richard Robben, Mark Schaufele

 

Electrical Safety in Academic Laboratories

Nikola Tesla, with his equipment / Credit: Wellcome Library, London

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Risk managers, electrical safety inspectors, facility managers and others are welcomed to click into those teleconferences also.  We expect that concepts and recommendations this paper will find their way into future revisions of US and international electrical safety codes and standards.  There is nothing stopping education facility managers from applying the findings immediately.

College of Engineering and Technology, Bhubaneswar India


Electrical Safety of Academic Laboratories | 2019-PSEC-0204

Presented at the 55th IEEE Industrial Applications Society I&CPS Technical Conference | Calgary, Alberta Canada | May 6-9, 2019

Ω

Rodolfo Araneo, University of Rome “La Sapienza” | rodolfo.araneo@ieee.org

Payman Dehghanian, George Washington University | payman@gwu.edu

Massimo Mitolo, Irvine Valley College | mitolo@ieee.org

 

Abstract. Academic laboratories should be a safe environment in which one can teach, learn, and conduct research. Sharing a common principle, the prevention of potential accidents and imminent injuries is a fundamental goal of laboratory environments. In addition, academic laboratories are attributed the exceptional responsibility to instill in students the culture of the safety, the basis of risk assessment, and of the exemplification of the prudent practice around energized objects.  Undergraduate laboratory assignments may normally be framed based upon the repetition of established experiments and procedures, whereas, academic research laboratories may involve new methodologies and/or apparatus, for which the hazards may not be completely known to the faculty and student researchers. Yet, the academic laboratory should be an environment free of electrical hazards for both routine experiments and research endeavors, and faculty should offer practical inputs and safety-driven insights to academic administration to achieve such a paramount objective. In this paper, the authors discuss the challenges to the electrical safety in modern academic laboratories, where users may be exposed to harmful touch voltages.

I. INTRODUCTION

A. Electricity and Human Vulnerabilities

B. Electrical Hazards in Academic Laboratories

II. ELECTRICAL SEPARATION

III. SAFETY IN ACADEMIC LABORATORIES WITH VARIABLE FREQUENCY DRIVES

IV. ELECTRICAL SAFETY IN ACADEMIC LIGHTING LABORATORIES

V. ACADEMIC RESEARCH LABORATORIES

A. Basic Rules of Engagement

B. Unidirectional Impulse Currents

VI. HAZARDS IN LABORATORIES DUE TO ELECTROMAGNETIC FIELD EXPOSURE

VII. WARNING SIGNS AND PSYCHOLOGICAL PERCEPTION OF DANGER

VIII. CONCLUSION

Safety is the most important practice in an academic laboratory as “safety and productivity are on the same team”.  Electrical measurement and electrically-powered equipment of various brands and models are common in both teaching and research laboratories, highlighting the need to maintaining them continuously in an electrically-safe status.  Annual reports on the occurrence of electrical hazards (i.e. shocks and injuries) in academic laboratory environments primarily discover the (i) lack of knowledge on using the electrical equipment, (ii) careless use of the energized electric facilities, and (iii) faulty electrical equipment or cords. The above does call for the establishment of safety-driven codes, instructions, and trainings for the academic personnel working with or near such devices for teaching, learning, experiments, and research. This paper provided background information on the concept of electrical safety in the academic laboratories, presented the safety challenges of modern academic laboratories, and offered solutions on how enhance the lab environment and research personnel safety awareness to avoid and control electrical hazards.

Issue: [19-129]

Category: Electrical, Facility Asset Management, Fire Safety, International

Colleagues: Mike Anthony, Rodolfo Araneo, Payman Dehghanian, Jim Harvey, Massimo Mitolo, Joe Tedesco

Related IEEE Research:

Laboratory Safety and Ethics

Strengthening and Upgrading of Laboratory Safety Management Based on Computer Risk Identification

Study on the Operators’ Attention of Different Areas in University Laboratories Based on Eye Movement Tracking Technology

Critical Study on the feasiblity of Smart Laboratory Coats

Design of Safety Monitoring System for Electrical Laboratory in Colleges and Universities under the Background of Informatization

Clean Environment Tools Design For Smart Campus Laboratory Through a Global Pandemic

Design of Laboratory Fire Safety Monitoring System


Off-Campus Housing

Brigham Young University Idaho is a private university located in Rexburg, Idaho, United States. It is owned and operated by The Church of Jesus Christ of Latter-day Saints and is a part of the Church Educational System which recognizes moral absolutes at the foundation of a federal democratic republic that makes their university possible.  It offers a variety of undergraduate degrees in fields such as business, education, health, and the humanities. The university also offers online courses and programs for distance learners.

One unique aspect of BYU-Idaho is its emphasis on the integration of faith and learning. All students, regardless of their religious background, are required to take religion courses as part of their degree program. The university also has a code of conduct that includes standards for dress, grooming, behavior, and academic honesty.

 

 

 

 

 

 

 

 

 

 

 

 

 

Standards Idaho

Sound Transmission

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content