Author Archives: mike@standardsmichigan.com

Loading
loading...

Life Safety Code

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.  Public comment on the First Draft of the 2027 Revision will be received until June 3, 2025.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

IEEE 2030

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Bleachers, Folding Seating & Grandstands

“View of the Colosseum” 1747 Giovanni Paolo Panini

 

Play is the making of civilization—how one plays the game

more to the point than whether the game is won or lost.

 

We follow development of best practice literature for spectator seating structures produced by the International Code Council,  the National Fire Protection Association (NFPA 102),  the American Society of Civil Engineers Structural Engineering Institute (ASCE SEI-7).  There are also federal regulations promulgated by the Consumer Product Safety Commission.  (Note that some of the regulations were inspired by the several regional building code non-profits before the International Code Council was formed in year ~ 2000)

The parent standard from the International Code Council is linked below:

ICC 300 Standard on Bleachers, Folding and Telescopic Seating, and Grandstands

The development of this standard is coordinated with the ICC Group A Codes.  We have tracked concepts in it previous revisions; available in the link below.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

As always, we encourage our colleagues with workpoint experience to participate directly in the ICC Code Development process.  CLICK HERE to get started.

Issue: [15-283]

Category: Athletics & Recreation, Architectural, Public Safety

Contact: Mike Anthony, Jack Janveja, Richard Robben

Virtual reality technology in evacuation simulation of sport stadiums


LEARN MORE:

Standard for Bleachers, Folding and Telescopic Seating, and Grandstands ICC 300-2017 edition Public Comment Draft – October 2017

ANSI Coverage / ICC 300-2017: Standard for Bleachers, Folding and Telescopic Seating, and Grandstands

 

Fences & Zoning

Colkett, Victoria Susanna; King’s College Chapel, Cambridge, as Seen from Clare Hall Piece and Crotches; National Trust, Anglesey Abbey;

Best practice discovery and promulgation for land use between colleges and universities and their host municipalities in the United States is hastened by a combination of codes, standards, and government regulations. Here are some key ones:

  1. Zoning Codes: Zoning ordinances dictate land use within municipalities, including where educational institutions can be located and what activities they can undertake.  
  2. Building Codes: These are regulations that govern the construction and maintenance of buildings. Educational institutions must comply with these codes for the safety and welfare of their occupants.
  3. Fire Codes: Fire codes ensure that buildings meet safety standards regarding fire prevention, evacuation procedures, and firefighting equipment. Compliance is crucial for the safety of students and staff.
  4. Health Codes: Health codes set standards for sanitation, food safety, and other health-related matters. Colleges and universities, especially those with dining facilities and student housing, must adhere to these regulations.
  5. Environmental Regulations: These regulations govern environmental protection, waste management, and pollution control. Educational institutions may need to comply with federal, state, and local environmental laws.
  6. Parking and Transportation Regulations: Municipalities often have regulations concerning parking, traffic flow, and public transportation. Colleges and universities must consider these factors when planning campus infrastructure and events.

  1. Land Use Regulations: Beyond zoning codes, municipalities may have additional land use regulations that affect educational institutions, such as restrictions on expansion or development in certain areas.
  2. Permitting and Licensing Requirements: Colleges and universities may need permits or licenses for certain activities, such as hosting events, serving alcohol, or operating transportation services.
  3. Taxation Laws: While educational institutions often enjoy tax-exempt status, they may still be subject to certain taxes, such as property taxes on non-educational properties or sales taxes on commercial activities.
  4. Student Housing Regulations: Some municipalities have specific regulations governing student housing, including occupancy limits, safety standards, and rental property inspections.
  5. Noise Ordinances: Municipalities may have ordinances regulating noise levels, particularly in residential areas. Colleges and universities must consider these regulations when planning events or construction activities.
  6. Community Relations Agreements: In some cases, colleges and universities may enter into agreements with their host municipalities to address specific issues or concerns, such as traffic management, public safety, or community engagement initiatives.

During today’s colloquium we explore the catalogs of the dominant standards developments whose titles are most frequently incorporated by reference into local statues.   Use the login credentials at the upper right of our home page.


Chesterton’s Fence is a simple rule of thumb that suggests you should never destroy a fence, change a rule, or alter a tradition if you do not understand why it was created in the first place. China’s Four Pests Campaign during the Great Leap Forward shows the tragic consequences of meddling with things we do not fully understand.

Several organizations set standards for the design, construction, and maintenance of sports fences. Some of the key organizations include:

1. American Society for Testing and Materials (ASTM International)

ASTM International develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, and services, including those related to sports fencing. Relevant standards include:

2. American Sports Builders Association (ASBA)

ASBA provides guidelines and specifications for the construction and maintenance of sports facilities, including fencing for various sports. They offer resources, best practices, and certification programs for sports builders.

3. International Code Council (ICC)

The ICC publishes the International Building Code (IBC), which includes guidelines for the construction and safety standards for sports facilities. The IBC is widely adopted by jurisdictions across the United States and provides a comprehensive set of regulations for building construction.

4. National Recreation and Park Association (NRPA)

NRPA sets standards and best practices for the design, construction, and maintenance of parks and recreational facilities, including sports fences. They provide resources and training to professionals in the field.

5. Occupational Safety and Health Administration (OSHA)

OSHA sets and enforces standards to ensure safe and healthful working conditions. This includes guidelines for workplace safety during the installation and maintenance of sports fences.

6. Fencing Industry Association (FIA)

The FIA provides industry-specific standards and best practices for the fencing industry. They offer resources, training, and certifications for professionals involved in the design, construction, and maintenance of fences.

Zoning

Land Measurement

In the United States, land surveying is regulated by various professional organizations and government agencies, and there are several technical standards that must be followed to ensure accuracy and consistency in land surveying.

The best practice for land surveying is set by the “Manual of Surveying Instructions” published by an administrative division of the United States Department of the Interior responsible for managing public lands in the United States. The manual provides detailed guidance on the procedures and techniques for conducting various types of land surveys, including public land surveys, mineral surveys, and cadastral surveys.

George Washington, Surveyor of Western Virginia

Manual of Surveying Instructions

Another important set of model standards for land surveying is the Minimum Standards for Property Boundary Surveys* published by the National Society of Professional Surveyors. These standards provide guidance on the procedures and techniques for conducting property boundary surveys, including the use of appropriate surveying equipment, the preparation of surveying maps and plats, and the documentation of surveying results.   Land surveyors in the United States are also required to adhere to state and local laws and regulations governing land surveying, as well as ethical standards established by professional organizations such as the American Society of Civil Engineers.


* Local variants

California: Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys

Michigan: Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys

 

The Morrill Land-Grant Act of 1862 granted each state 30,000 acres of federal land for each member of Congress from that state to establish colleges that would teach agriculture, engineering, and military tactics. This legislation led to the establishment of many public universities, including the Texas A&M University, the University of Wisconsin and Michigan State University.

International Zoning Code

International Zoning Code

ANSI Standards Action: February 2, 2024

National Association of County Engineers

The purpose of the code is to establish minimum requirements to provide a reasonable level of health, safety, property protection and welfare by controlling the design, location, use or occupancy of all buildings and structures through the regulated and orderly development of land and land uses within this jurisdiction.

CLICK IMAGE

Municipalities usually have specific land use or zoning considerations to accommodate the unique needs and characteristics of college towns:

  1. Mixed-Use Zoning: Cities with colleges and universities often employ mixed-use zoning strategies to encourage a vibrant and diverse urban environment. This zoning approach allows for a combination of residential, commercial, and institutional uses within the same area, fostering a sense of community and facilitating interactions between students, faculty, and residents.
  2. Height and Density Restrictions: Due to the presence of educational institutions, cities may have specific regulations on building height and density to ensure compatibility with the surrounding neighborhoods and maintain the character of the area. These restrictions help balance the need for development with the preservation of the existing urban fabric.
  3. Student Housing: Cities with colleges and universities may have regulations or guidelines for student housing to ensure an adequate supply of affordable and safe accommodations for students. This can
    include requirements for minimum bedroom sizes, occupancy limits, and proximity to campus.
  4. Parking and Transportation: Given the concentration of students, faculty, and staff, parking and transportation considerations are crucial. Cities may require educational institutions to provide parking facilities or implement transportation demand management strategies, such as promoting public transit use, cycling infrastructure, and pedestrian-friendly designs.
  5. Community Engagement: Some cities encourage colleges and universities to engage with the local community through formalized agreements or community benefit plans. These may include commitments to support local businesses, contribute to neighborhood improvement projects, or provide educational and cultural resources to residents.

This is a relatively new title in the International Code Council catalog; revised every three years in the Group B tranche of titles.  Search on character strings such as “zoning” in the link below reveals the ideas that ran through the current revision:

Complete Monograph: 2022 Proposed Changes to Group B I-Codes (1971 pages)

We maintain it on our periodic I-Codes colloquia, open to everyone.  Revision proposals for the 2026 revision will be received until January 10, 2025.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We maintain it on our periodic I-Codes colloquia, open to everyone with the login credentials at the upper right of our home page.

The City Rises (La città che sale) | 1910 Umberto Boccioni


Related:

Signs, Signs, Signs

  1. Reed v. Town of Gilbert (2015): This Supreme Court case involved a challenge to the town of Gilbert, Arizona’s sign code, which regulated the size, location, and duration of signs based on their content. The court held that the sign code was a content-based restriction on speech and therefore subject to strict scrutiny.
  2. City of Ladue v. Gilleo (1994): In this Supreme Court case, the court struck down a municipal ordinance that banned the display of signs on residential property, except for signs that fell within specific exemptions. The court held that the ban was an unconstitutional restriction on the freedom of speech.
  3. Metromedia, Inc. v. San Diego (1981): This Supreme Court case involved a challenge to a San Diego ordinance that banned off-premises advertising signs while allowing on-premises signs. The court held that the ordinance was an unconstitutional restriction on free speech, as it discriminated against certain types of speech.
  4. City of Ladue v. Center for the Study of Responsive Law, Inc. (1980): In this Supreme Court case, the court upheld a municipal ordinance that prohibited the display of signs on public property, but only if the signs were posted for longer than 10 days. The court held that the ordinance was a valid time, place, and manner restriction on speech.
  5. City of Boerne v. Flores (1997): This Supreme Court case involved a challenge to a municipal sign code that regulated the size, location, and content of signs in the city. The court held that the sign code violated the Religious Freedom Restoration Act, as it burdened the exercise of religion without a compelling government interest.

 

Novel Transmission Line Design for Reduced EMF

Electric Field Comparison of Conventional Transmission Line With Unconventional Transmission Line

Easir Arafat, et. al

Department of Electrical and Computer Engineering

Zero Emission, Realization of Optimized Energy Systems Laboratory

The University of Texas at Dallas

Abstract: To accommodate the growing demand for electricity, a novel transmission line design has been proposed. This proposed structure must undergo rigorous evaluation to ensure it complies with existing safety standards. As magnetic field and electric field are crucial for the safety of systems and their surroundings, the proposed line must adhere to established limits. This paper presents a comparison of the electric field generated by a newly proposed unconventional overhead line compared to a conventional line where electric field is calculated for each sub-conductor individually. The results demonstrate that the unconventional transmission line exhibits a more favorable electric field profile compared to the conventional line.

CLICK IMAGE

In large to medium-sized cities in the US, the highest voltages typically found in the power distribution and transmission systems are as follows:

  1. Transmission Lines: These are the high-voltage lines that transport electricity over long distances from power plants to substations near populated areas. The voltages for transmission lines can range from:
    • 69 kV (kilovolts)
    • 115 kV
    • 138 kV
    • 230 kV
    • 345 kV
    • 500 kV
    • Up to 765 kV in some areas
  2. Sub-transmission Lines: These lines carry electricity from the high-voltage transmission system to the distribution substations and have voltages typically ranging from:
    • 34.5 kV
    • 69 kV
    • 115 kV
  3. Distribution Lines: These lines deliver electricity from substations to consumers and generally operate at lower voltages. Common distribution voltages include:
    • 4.16 kV
    • 13.2 kV
    • 13.8 kV
    • 25 kV
    • 34.5 kV

The specific voltage levels can vary depending on the region and the utility company managing the electrical infrastructure. The highest voltages, especially those above 230 kV, are generally found in the transmission network, which is designed to efficiently move large quantities of power over long distances.

„Northern Lights”

Chór Śląskiego Uniwersytetu Medycznego w Katowicach

This is a choral composition that falls within the genre of modern classical music.  Ola Gjeilo is a Norwegian composer and pianist known for his engaging and atmospheric choral works; here inspired by the Aurora Borealis.

The text is the Latin Pulchra es, amica mea, from Song of Solomon:

Thou art beautiful, O my love,
sweet and comely as Jerusalem,
terrible as an army set in array.
Turn away thy eyes from me,
for they have made me flee away.

History of Western Civilization Told Through the Acoustics of its Worship Spaces

Polska

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content