Author Archives: mike@standardsmichigan.com

Loading
loading...

Fireplace Brickwork

International Building Code | Chapter 27 Masonry

Student Members in Detroit

Founded in 1904 in Farmington Hills, Michigan, the ACI has the most widely adopted catalog of consensus-based standards for design, construction, educational programs, certification programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete — the most widely used construction material in the world.

Q. How is brickwork different from masonry? A. Brickwork and masonry are related terms in construction, but they are not exactly the same.

  • Masonry refers to the broader practice of building structures using a variety of materials like stone, brick, concrete blocks, or tiles. It encompasses all forms of stonework, brickwork, and blockwork. Masonry is a general term for the craft and the materials used in creating walls, structures, and even decorative elements in construction.
  • Brickwork, on the other hand, is a specific subset of masonry that involves the use of bricks as the building material. It focuses solely on the techniques and practices of laying bricks to build walls, arches, and other structural or decorative elements.

While all brickwork is masonry, not all masonry is brickwork. Masonry can also involve stone or other materials, whereas brickwork is specifically about bricks.

Q. What is the difference between cement and concrete?  A. Cement and concrete are two different materials, although they are often used together in construction projects. Cement is a powdery substance that is used as a binder in building materials, while concrete is a composite material made up of cement, water, and aggregates (such as sand, gravel, or crushed stone).

Cement is produced by grinding clinker (a mixture of raw materials such as limestone, clay, and iron ore) with gypsum and other additives, to produce a fine powder. This powder is then mixed with water to create a paste that can be used to bind building materials together, such as bricks or blocks, or to create mortars and grouts for masonry work.

Concrete, on the other hand, is a mixture of cement, water, and aggregates. The aggregates are typically added to provide strength and bulk to the concrete. The type and size of aggregates used can vary depending on the desired strength, texture, and other properties of the concrete.

Q. What skill standards are required of certified practitioners? A.  Concrete work requires knowledge of materials, tools, techniques, safety practices, and local building codes. The specific skill standards may vary depending on the scope and complexity of the concrete work, as well as the location and applicable regulations. Some of the common skills and knowledge required for managing or installing concrete include:

  1. Knowledge of materials: Understanding the properties of cement, aggregates, admixtures, and other materials used in concrete, as well as their interactions and effects on the final product.
  2. Ability to read plans and specifications: Being able to interpret blueprints, drawings, and other project documents to understand the scope of work, the required concrete mix design, and any special requirements or constraints.
  3. Concrete mixing and placement techniques: Knowing how to properly mix concrete ingredients, and how to place and finish concrete using various techniques and tools, such as screeds, trowels, and floats.
  4. Safety practices: Understanding and following proper safety practices when working with concrete, such as wearing personal protective equipment (PPE), using proper lifting techniques, and ensuring proper ventilation.
  5. Knowledge of local building codes: Being familiar with local building codes and regulations related to concrete work, such as minimum thickness and strength requirements, reinforcement specifications, and other standards.

Q. What other organizations are involved in standards setting in this domain? A. There are several organizations that develop standards for concrete construction. These standards are used to ensure that concrete structures are safe, durable, and meet the requirements of building codes and regulations.

  1. ASTM International: ASTM International is a global organization that develops and publishes technical standards for a wide range of materials, products, systems, and services. ASTM has published many standards related to concrete materials and construction, including specifications for concrete mix design, testing methods for concrete strength and durability, and guidelines for concrete repair and maintenance.
  2. National Ready Mixed Concrete Association (NRMCA): The NRMCA is a trade association that represents producers of ready-mixed concrete and provides education and resources on the use of ready-mixed concrete. The NRMCA develops standards and guidelines related to concrete mix design, quality control, and sustainability.
  3. International Concrete Repair Institute (ICRI): The ICRI is a professional association that focuses on concrete repair and restoration. The ICRI develops standards and guidelines for concrete repair and maintenance, including guidelines for surface preparation, repair materials, and application techniques.

“American Bricklayer” 1904 | Alice Ruggles

 

United States Standards System

Essential Requirements
Your 2025 Guide to ANSI’s Community Resources

S. Joe Bhatia at the University of Michigan Ross School of Business | ANSI Company Member Forum, May 2016

CLICK ON IMAGE FOR COMPLETE PRESENTATION

With many non-profit organizations also challenged by the pandemic we are likely to see fewer experts at technology, finance and management gatherings where leading practice is discovered and promulgated.  That does not mean that many gatherings will not be offloaded onto the internet but, with fewer paid experts involved, one wonders whether there will be fewer unpaid experts — or will there be more unpaid experts?  We shall see.

Since the United States federal government can print money it is likely that more decision-making will be drawn back to Washington D.C.  — where the money is.  The likelihood that we shall see greater federal control over education facility industry originating at the federal level inspires a revisit of the United States standards system.   The National Institute of Standards and Technology is the oversight agency and the American National Standards Institute is the private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States.

To understand ideal balance in the US standards system See § 2.3 ANSI Essential Requirements: Due process requirements for American National Standards

 


FROM OUR ARCHIVE:

Trowel Trades

Bricklayers, sometimes known as masons, are skilled craftsmen that must be physically fit, have a high level of mathematical skill and a love for precision and detail.

 

Bricklaying standards are guidelines and specifications that ensure the quality and safety of bricklaying work. These standards are often established by industry organizations, regulatory bodies, or national building codes. While specific standards may vary by region, some core bricklaying standards include:

Building Codes: Compliance with local building codes is essential. These codes provide regulations for construction practices, including specifications for masonry work. Bricklayers must adhere to the building codes relevant to the specific location of the construction project.

ASTM International Standards: ASTM International (formerly known as the American Society for Testing and Materials) develops and publishes technical standards for various industries, including construction. ASTM standards related to bricklaying cover materials, testing procedures, and construction practices.

Masonry Construction Standards: Organizations like the Masonry Standards Joint Committee (MSJC) in the United States publish standards specifically focused on masonry construction. These standards address topics such as mortar, grout, reinforcement, and structural design considerations.

Quality Control: Standards related to quality control in bricklaying include specifications for mortar mixtures, proper curing of masonry, and guidelines for inspecting finished work. Adherence to these standards helps ensure the durability and longevity of the masonry construction.

Safety Standards: Occupational safety standards, such as those outlined by the Occupational Safety and Health Administration (OSHA) in the United States, are critical for protecting workers on construction sites. These standards cover aspects like fall protection, scaffolding safety, and the proper use of personal protective equipment.

Brick and Block Standards: Standards related to the dimensions, composition, and properties of bricks and concrete blocks are important for achieving structural integrity. These standards specify characteristics such as compressive strength, absorption, and dimensional tolerances.

Construction Tolerances: Tolerances dictate acceptable variations in dimensions and alignments in bricklaying work. These standards help ensure that the finished structure meets design specifications and industry-accepted tolerances.

Testing and Inspection: Standards related to the testing and inspection of masonry work help verify that construction meets specified requirements. This includes procedures for mortar testing, grout testing, and overall quality inspections.

It’s important for bricklayers and construction professionals to be aware of and follow these standards to guarantee the safety, quality, and compliance of their work. Additionally, staying informed about updates to industry standards is crucial as they may evolve over time to reflect advancements in materials, techniques, and safety practices.

St. Olaf College | Dakota County Minnesota

International Building Code Chapter 21: Masonry

Installer Tile Specialist Installation Standards

Home

Installer Tile Specialist (ITS) Installation Standards Verification (English)

Moral Inquiry



Freely Available ICT Standards

United States Technical Advisory Group Administrator: INCITS

“Le Lac Léman ou Près d’Evian au lac de Genève” 1883 François BocionISO and IEC Joint Technical Committee 1  is the work center for international information and communications technology (ICT) standards that are relevant to education communities.  In accordance with ISO/IEC JTC 1 and the ISO and IEC Councils, some International Standards and other deliverables are made freely available for standardization purposes.

Freely Available International Standards

We at least follow action, and sometimes contribute data and user-interest perspective, to the development of standards produced by several ANSI-accredited ICT standard developing organizations — ATIS, BICSI, IEEE, INCITS, TIA among them.  US-based organizations may communicate directly with Lisa Rajchel, ANSI’s ISO/IEC JTC 1 Senior Director for this project: lrajchel@ansi.org.  Our colleagues at other educational organizations should contact their national standards body.

We scan the status of Infotech and Cloud standards periodically and collaborate with a number of IEEE Societies.  See our CALENDAR for the next online meeting; open to everyone.

More

The ISO/IEC Joint Technical Committee for Information Technology (JTC 1)

ISO/IEC JTC 1/SC 36 Information technology for learning, education and training

ISO/IEC JTC 1/SC 32 Data management and interchange

Metering and Billing

Although electrical power  delivered with both active and reactive components our interest lies primarily in the useable power component — watts (power) and watt-hour(energy).  A secondary concern is whether or not energy useage meters are over-specified; particularly on points in building power chains downstream from the utility service meters.

Electrical meters, used for measuring electricity consumption, must comply with various codes and standards to ensure accuracy, safety, and reliability.  Today at the usual hour – from the user point of view – we will review the status of key codes and standards relevant to electrical meter manufacturing, primarily focusing on North American standards.  Use the login credentials at the upper right of our home page.

ANSI C12.1 – Code for Electricity Metering

  • Specifies performance criteria for AC watt-hour meters, demand meters, pulse devices, and auxiliary devices.
  • Covers testing, installation, accuracy classes, voltage/frequency ratings, and environmental tests (e.g., RF interference).
  • Current edition: ANSI C12.1-2024.

ANSI C12.10 – Physical Aspects of Watt-hour Meters

  • Defines physical and dimensional requirements for watt-hour meters, including socket and bottom-connected meters.
  • Ensures compatibility with metering installations.

ANSI C12.20 – Electricity Meters – 0.1, 0.2, and 0.5 Accuracy Classes

  • Establishes accuracy requirements for revenue-grade meters (0.1%, 0.2%, and 0.5% accuracy classes).
  • Note: Content merged into ANSI C12.1 in recent updates, with C12.20 withdrawn.

ANSI C12.31 – Standard Definitions of AC Electrical Power

  • Defines terms for active, reactive, and apparent power/energy, ensuring consistent measurement methodologies.
  • Under revision as ANSI C12.31-202x.

NEMA C12 Series

  • Published by the National Electrical Manufacturers Association (NEMA).
  • Aligns with ANSI C12 standards, focusing on metering equipment specifications and safety.

UL 2735 – Standard for Electric Utility Meters

  • Safety standard for electric meters, addressing electrical shock, fire hazards, and mechanical risks.
  • Ensures meters meet safety requirements for installation and operation.

NFPA 70 – National Electrical Code (NEC)

  • While not specific to manufacturing, NEC governs meter installation requirements (e.g., meter base mounting, grounding).
  • Relevant for ensuring meters comply with installation safety standards.  We cover this topic of a safety point of view in the sessions linked below:

Electric Service Metering & Billing

Electrical Meter Center Manufacturing

Related:

The Effects of Energy Dashboards and Competition Programming on Electricity Consumption on a College Campus (Western Michigan University)

Comparative Feedback on Consumers’ Energy-Saving Behavior: A College Dormitory Example

“Faith of our Fathers”

Home

“Faith of Our Fathers” is a hymn written in 1849 by Frederick William Faber, a Catholic priest, to honor the steadfast faith of Catholic martyrs, particularly in England during times of persecution. Set to the tune “St. Catherine,” it celebrates the enduring legacy of faith passed down through generations, emphasizing resilience against adversity. The lyrics reflect themes of sacrifice, courage, and devotion, urging believers to uphold their faith despite challenges.

Originally Catholic, the hymn has been adapted by various Christian denominations, symbolizing a universal call to remain steadfast in spiritual conviction, inspired by ancestral faithfulness.

Standards Illinois

Electric Service Metering & Billing

Electrical Safety

Today at 16:00 UTC we review best practice for engineering and installing the point of common coupling between an electrical service provider its and an purchasing — under the purview of NEC CMP-10.

Committee topical purviews change cycle-to-cycle.  Here’s the transcript for today’s session:  CMP-10 Second Draft Report (368 pages)

Use the login credentials at the upper right of our home page.

The relevant passages of the National Electrical Code are found in Article 230 and Article 495.  We calibrate our attention with the documents linked below.  These are only representative guidelines:

University of Michigan Medium Voltage Electrical Distribution

Texas A&M University Medium Voltage Power Systems

University of Florida Medium Voltage Electrical Distribution

Representative standards for regulated utilities for purchased power:

Detroit Edison Primary Service Standards (Green Book)

American Electric Power: Requirements for Electrical Services

Pacific Gas & Electric Primary Service Requirements

The IEEE Education & Healthcare Facilities Committee curates a library of documents similar to those linked above.

Design of Electrical Services for Buildings

We are in the process of preparing new (original, and sometimes recycled) proposals for the 2026 National Electrical Code, with the work of Code Panel 10 of particular relevance to today’s topic:

2026 National Electrical Code Workspace

First Draft Meetings: January 15-26, 2024 in Charleston, South Carolina


Electrical meter billing standards are generally regulated at the state or local level, with guidelines provided by public utility commissions or similar regulatory bodies.  These tariff sheets are among the oldest in the world.  There are some common standards for billing and metering practices, including:

  1. Meter Types: There are various types of meters used to measure electricity consumption, including analog (mechanical) meters, digital meters, and smart meters. Smart meters are becoming more common and allow for more accurate and real-time billing.
  2. Billing Methodology:
    • Residential Rates: Most residential customers are billed based on kilowatt-hours (kWh) of electricity used, which is the standard unit of energy.
    • Demand Charges: Some commercial and industrial customers are also subject to demand charges, which are based on the peak demand (the highest amount of power drawn at any one point during the billing period).
    • Time-of-Use Rates: Some utilities offer time-of-use (TOU) pricing, where electricity costs vary depending on the time of day or season. For example, electricity may be cheaper during off-peak hours and more expensive during peak hours.
  3. Meter Reading and Billing Cycle:
    • Monthly Billing: Typically, customers receive a bill once a month, based on the reading of the electricity meter.
    • Estimation: If a meter reading is not available, some utilities may estimate usage based on historical patterns or average usage.
    • Smart Meter Readings: With smart meters, some utilities can provide daily or even hourly usage data, leading to more precise billing.
  4. Meter Standards: The standards for electrical meters, including their accuracy and certification, are set by national organizations like the National Institute of Standards and Technology (NIST) and the American National Standards Institute (ANSI). Meters must meet these standards to ensure they are accurate and reliable.
  5. Utility Commission Regulations: Each state has a utility commission (such as the California Public Utilities Commission, the Texas Public Utility Commission, etc.) that regulates the rates and billing practices of electricity providers. These commissions ensure that rates are fair and that utilities follow proper procedures for meter readings, billing cycles, and customer service
  6. Large University “Utilities”.   Large colleges and universities that generate and distribute some or all of their electric power consumption have developed practices to distribute the cost of electricity supply to buildings.  We will cover comparative utility billing practices in a dedicated colloquium sometime in 2025.

Michigan Public Service Commission | Consumer’s Energy Customer Billing Rules

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content