Category Archives: Architectural/Hammurabi

Loading
loading...

Unified Facilities Criteria

Memorandum

Our interest lies in the built environment for higher education students seeking careers in the military.   Many marquee colleges and universities are, at best, ambivalent about the presence of the military in their educational settlements.  Alas, that is a discussion for another organization; not ours.

 We list a few pros and five cons regarding how the National Institute of Building Sciences (NIBS) may support our primary mission this industry, based on its alignment with the National Clearinghouse for Educational Facilities (NCEF) and the National Center on School Infrastructure (NCSI).

Pros

  • Comprehensive Resource Hub via NCEF: NIBS manages the National Clearinghouse for Educational Facilities (NCEF), established by the U.S. Department of Education in 1997, which serves as a vital resource for school administrators, facility managers, designers, and researchers. It provides free access to news, events, data, and statistics on school facilities planning, design, funding, construction, and maintenance, enabling stakeholders to make informed decisions for safe, healthy, and high-performing educational environments.

  • Advocacy for Safe and Sustainable Schools: Through the National Center on School Infrastructure (NCSI), NIBS collaborates with partners to provide technical assistance and training to state and local educational agencies. This initiative focuses on improving public school infrastructure to ensure health, safety, sustainability, and equity, helping schools address challenges like aging facilities and climate resilience.

  • Development of Standards and Guidelines: NIBS develops criteria, guidelines, and best practices recognized by organizations like the American Institute of Architects (AIA) and the International Code Council (ICC). These resources can guide the construction and renovation of educational facilities to meet high-performance standards, ensuring durability, energy efficiency, and safety.

  • Promotion of Digital Transformation: NIBS supports initiatives like the U.S. National BIM Program, which promotes digital transformation in designing, constructing, and operating educational facilities. Building Information Modeling (BIM) can streamline project management, reduce costs, and improve facility maintenance in schools.

  • Stakeholder Collaboration: NIBS brings together experts from government, industry, labor, and academia to address challenges in the built environment. This collaborative approach fosters innovative solutions tailored to educational facilities, such as resilient design to mitigate natural hazards, which is critical for protecting students and staff.

Cons

  • Dependence on Funding and Membership: NIBS relies on a mix of public and private financing, including membership dues and grants. Budget constraints or shifts in funding priorities could limit the resources available for educational facility-specific programs like NCEF or NCSI, reducing their effectiveness.
  • Complexity of Implementation: The technical standards and guidelines developed by NIBS, such as those for BIM or resilience, may be complex and require significant expertise to implement. Smaller school districts with limited resources or technical know-how may struggle to adopt these advanced practices.

  • Potential for Slow Consensus-Building: NIBS emphasizes collaboration and consensus among diverse stakeholders, which can be time-consuming. This process may delay the development or implementation of solutions critical for addressing urgent needs in educational facilities, such as rapid repairs for aging infrastructure.

  • Limited Public Awareness: Despite its contributions, NIBS may not be widely known among local school administrators or facility managers. This lack of awareness could hinder the adoption of its resources, such as NCEF’s database or NCSI’s technical assistance, limiting their impact on the educational facilities industry.

NIBS offers significant benefits to the educational facilities industry through its resources, technical assistance, and collaborative approach, particularly via programs like NCEF and NCSI. However, its broad focus, funding dependencies, and the complexity of its solutions may pose challenges for widespread adoption, especially in under-resourced school districts. For more information on NIBS’s initiatives, visit nibs.org or explore specific programs like the NCSI at ed.gov.


Comment (MAA):  A snarky slide title that implies that current policy is working.  Uncertain policy means the American people are asking for change given US Debt; some of it accelerated by partisans of a large government and its handmaidens in academia.

 

Bleachers, Folding Seating & Grandstands

“View of the Colosseum” 1747 Giovanni Paolo Panini

 

Play is the making of civilization—how one plays the game

more to the point than whether the game is won or lost.

 

We follow development of best practice literature for spectator seating structures produced by the International Code Council,  the National Fire Protection Association (NFPA 102),  the American Society of Civil Engineers Structural Engineering Institute (ASCE SEI-7).  There are also federal regulations promulgated by the Consumer Product Safety Commission.  (Note that some of the regulations were inspired by the several regional building code non-profits before the International Code Council was formed in year ~ 2000)

The parent standard from the International Code Council is linked below:

ICC 300 Standard on Bleachers, Folding and Telescopic Seating, and Grandstands

The development of this standard is coordinated with the ICC Group A Codes.  We have tracked concepts in it previous revisions; available in the link below.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

As always, we encourage our colleagues with workpoint experience to participate directly in the ICC Code Development process.  CLICK HERE to get started.

Issue: [15-283]

Category: Athletics & Recreation, Architectural, Public Safety

Contact: Mike Anthony, Jack Janveja, Richard Robben

Virtual reality technology in evacuation simulation of sport stadiums


LEARN MORE:

Standard for Bleachers, Folding and Telescopic Seating, and Grandstands ICC 300-2017 edition Public Comment Draft – October 2017

ANSI Coverage / ICC 300-2017: Standard for Bleachers, Folding and Telescopic Seating, and Grandstands

 

Age Appropriate Design Code

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Masonry

“Buildings, too, are children of Earth and Sun.”
— Frank Lloyd Wright:

Harvard University Dormitory Room | Smithsonian Museum | Thomas Warren Sears Collection

Today we sort through the best practice literature for designing and building education settlements with brick — the world’s oldest construction material.   Masonry is a term used to describe the construction of structures using individual units that are bound together with mortar. Brickwork is a specific type of masonry that involves the use of bricks as the primary building units.

We use the terms interchangeably reflecting vernacular use in the literature.  Brickwork in building construction lies in its ability to provide structural strength, fire resistance, thermal and sound insulation, aesthetic appeal, low maintenance, environmental friendliness, cost-effectiveness, and versatility.

Use the login credentials at the upper right of our homepage.

 

Masonry is a construction technique that involves the use of individual units, typically made of materials like brick, stone, concrete blocks, or clay tiles, which are bound together with mortar to create walls, columns, or other structural elements. Masonry has been used for thousands of years and remains a popular method for building various structures, including houses, commercial buildings, bridges, and more.

The key components of masonry construction are:

  1. Masonry Units: These are the individual building blocks or pieces, such as bricks or stones, that form the structure. They come in various shapes, sizes, and materials, depending on the specific requirements of the project.
  2. Mortar: Mortar is a mixture of cement, sand, and water that is used to bind the masonry units together. It acts as both an adhesive and a filler between the units, providing strength and stability to the structure.
  3. Masonry Workmanship: Skilled craftsmen, known as masons, are responsible for arranging and securing the masonry units with mortar. Their expertise ensures the structural integrity and aesthetic quality of the finished product.

Masonry construction offers several advantages:

  • Durability: Masonry structures are known for their longevity and resistance to fire, weather, and pests.
  • Aesthetic Appeal: Masonry can be used to create intricate designs and patterns, making it a popular choice for architectural and decorative elements.
  • Energy Efficiency: Masonry walls have good thermal mass, which can help regulate indoor temperatures and reduce energy costs.
  • Low Maintenance: Masonry structures typically require minimal maintenance over the years.

Masonry can be categorized into different types based on the materials and methods used. Some common forms of masonry include:

  • Brick Masonry: This involves using clay or concrete bricks to build walls and structures. It is widely used in residential and commercial construction.
  • Stone Masonry: Natural stones, such as granite, limestone, and slate, are used to create walls and structures in this type of masonry. It’s often used for historical or architectural projects.
  • Concrete Block Masonry: Concrete blocks are used to construct walls in this form of masonry, and it’s commonly seen in industrial and commercial buildings.
  • Reinforced Masonry: Steel reinforcement is incorporated into masonry walls to enhance structural strength.

Masonry is a versatile construction method that can be used in various applications, and it continues to be a fundamental part of the construction industry.

More:

College of West Anglia: Bricklayer Apprenticeship

North Carolina State University Industry Expansion Solutions: Fireplace & Chimney Safety

Salt Lake Community College: Brick Mason

Occupational Safety and Health Administration: Fall Protection

Trowel Trades

Bricklayers, sometimes known as masons, are skilled craftsmen that must be physically fit, have a high level of mathematical skill and a love for precision and detail.

 

Bricklaying standards are guidelines and specifications that ensure the quality and safety of bricklaying work. These standards are often established by industry organizations, regulatory bodies, or national building codes. While specific standards may vary by region, some core bricklaying standards include:

Building Codes: Compliance with local building codes is essential. These codes provide regulations for construction practices, including specifications for masonry work. Bricklayers must adhere to the building codes relevant to the specific location of the construction project.

ASTM International Standards: ASTM International (formerly known as the American Society for Testing and Materials) develops and publishes technical standards for various industries, including construction. ASTM standards related to bricklaying cover materials, testing procedures, and construction practices.

Masonry Construction Standards: Organizations like the Masonry Standards Joint Committee (MSJC) in the United States publish standards specifically focused on masonry construction. These standards address topics such as mortar, grout, reinforcement, and structural design considerations.

Quality Control: Standards related to quality control in bricklaying include specifications for mortar mixtures, proper curing of masonry, and guidelines for inspecting finished work. Adherence to these standards helps ensure the durability and longevity of the masonry construction.

Safety Standards: Occupational safety standards, such as those outlined by the Occupational Safety and Health Administration (OSHA) in the United States, are critical for protecting workers on construction sites. These standards cover aspects like fall protection, scaffolding safety, and the proper use of personal protective equipment.

Brick and Block Standards: Standards related to the dimensions, composition, and properties of bricks and concrete blocks are important for achieving structural integrity. These standards specify characteristics such as compressive strength, absorption, and dimensional tolerances.

Construction Tolerances: Tolerances dictate acceptable variations in dimensions and alignments in bricklaying work. These standards help ensure that the finished structure meets design specifications and industry-accepted tolerances.

Testing and Inspection: Standards related to the testing and inspection of masonry work help verify that construction meets specified requirements. This includes procedures for mortar testing, grout testing, and overall quality inspections.

It’s important for bricklayers and construction professionals to be aware of and follow these standards to guarantee the safety, quality, and compliance of their work. Additionally, staying informed about updates to industry standards is crucial as they may evolve over time to reflect advancements in materials, techniques, and safety practices.

St. Olaf College | Dakota County Minnesota

International Building Code Chapter 21: Masonry

Rightsizing Electrical Power Systems

Standards Michigan, spun-off in 2016 from the original University of Michigan Business & Finance Operation, has peppered NFPA 70 technical committees writing the 2016-2026 National Electric Code with proposals to reduce the size of building premise feeder infrastructure; accommodating the improvements made in illumination and rotating machinery energy conservation since the 1980’s (variable frequency drives, LED lighting, controls, etc.)

These proposals are routinely voted down in 12-20 member committees representing manufacturers (primarily) though local inspection authorities are complicit in overbuilding electric services because they “bill by the service panel ampere rating”.  In other words, when a municipality can charge a higher inspection fee for a 1200 ampere panel, what incentive is there to support changes to the NEC that takes that inspection fee down to 400 amperes?

The energy conservation that would result from the acceptance of our proposals into the NEC are related to the following: reduced step down transformer sizes, reduced wire and conduit sizes, reduced panelboard sizes, reduced electric room cooling systems — including the HVAC cooling systems and the ceiling plenum sheet metal carrying the waste heat away.   Up to 20 percent energy savings is in play here and all the experts around the table know it.   So much for the economic footprint of the largest non-residential building construction market in the United States — about $120 billion annually.

The market incumbents are complicit in ignoring energy conservation opportunity.  To paraphrase one of Mike Anthony’s colleagues representing electrical equipment manufacturers:

“You’re right Mike, but I am getting paid to vote against you.”

NFPA Electrical Division knows it, too.

University of Michigan

 

Rightsizing Commercial Electrical Power Systems: Review of a New Exception in NEC Section 220.12

Michael A. AnthonyJames R. Harvey

University of Michigan, Ann Arbor

Thomas L. Harman

University of Houston, Clear Lake, Texas

For decades, application of National Electrical Code (NEC) rules for sizing services, feeders and branch circuits has resulted in unused capacity in almost all occupancy classes. US Department of Energy data compiled in 1999 indicates average load on building transformers between 10 and 25 percent. More recent data gathered by the educational facilities industry has verified this claim. Recognizing that aggressive energy codes are driving energy consumption lower, and that larger than necessary transformers create larger than necessary flash hazard, the 2014 NEC will provide an exception in Section 220.12 that will permit designers to reduce transformer kVA ratings and all related components of the power delivery system. This is a conservative, incremental step in the direction of reduced load density that is limited to lighting systems. More study of feeder and branch circuit loading is necessary to inform discussion about circuit design methods in future revisions of the NEC.

CLICK HERE for complete paper

University of Houston

2026 National Electrical Code Workspace

Occupancy Classification and Use

 

In educational settings, where large numbers of students, staff, and visitors gather, these rules protect vulnerable populations, especially children, who may lack the awareness or ability to respond quickly in emergencies. Proper classification ensures adequate exits, fire-resistant materials, and ventilation suited for classrooms or assembly areas like auditoriums.
These classifications also inform zoning, insurance, and funding by aligning facilities with educational purposes.

Libraries are multi-functional spaces and at the physical, and the heart, of any school, college or university.   We take special interest in this discussion.    Leaving the evolution toward “media centers” aside, the relevant passage in the current International Building Code that applies to library occupancy classification and use is linked below:

Chapter 3 Occupancy Classification and Use

 

The original University of Michigan advocacy enterprise may have raised the level of debate on structural engineering three cycles ago.  Without any specific interest from attendees we will review our proposals in previous revision cycles:

  1. Education facilities as storm shelters
  2. Enhanced classroom acoustics
  3. Carbon monoxide detection in Group E occupancies
  4. Locking arrangements in educational occupancies
  5. Interior lighting power allowances for classrooms
  6. Occupancy sensors for classrooms
  7. Automatic control of receptacle power in classrooms and laboratories
  8. Expansion of voltage drop requirements into customer-owned service conductors

This is about as much as we can sort through this week.  We will host another focus teleconference next week.  See our CALENDAR for the date.

Finally, we persist in encouraging education industry facility managers (especially those with operations and maintenance data) to participate in the ICC code development process.  You may do so by CLICKING HERE.

Real asset managers for school districts, colleges, universities and technical schools in the Albuquerque region should take advantage of the opportunity to observe the ICC code-development process.   The Group B Hearings are usually webcast — and we will signal the link to the 10-day webcast when it becomes available — but the experience of seeing how building codes are determined is enlightening when you can watch it live and on site.

 

Issue: [16-169]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony, Jack Janveja, Richard Robben

#StandardsNewMexico


LEARN MORE:

ICC Group B Code Development Schedule

Little Big Horn College

 

 

 

 

 

Every month we direct our colleagues in the education industry to the US Census Department’s monthly construction report to make a point: at an average annual clip of about $75 billion, the education industry is the largest non-residential building construction market in the United States.  A large part of that construction involves infrastructure upgrades of existing buildings that contribute to sustainability goals but may not make flashy architectural statements for philanthropists.

EDUCATION INDUSTRY CONSTRUCTION SPEND

The International Existing Building Code (IEBC) is a model code in the International Code Council family of codes intended to provide requirements for repair and alternative approaches for alterations and additions to existing buildings (LEARN MORE).  A large number of existing buildings and structures do not comply with the current building code requirements for new construction.  Although many of these buildings are potentially salvageable, rehabilitation is often cost-prohibitive because compliance with all the new requirements for new construction could require extensive changes that go well beyond the value of building or the original scope of the alteration.

Education facility planners, architects and managers: Sound familiar?

ICC administered workgroups have been convening with considerable frequency over the past several months to pull together a number of relevant concepts for the next (2019 Group B) revision.  For the purpose of providing some perspective on the complexity and subtlety of the issues in play, a partial overview of working group activity is available in the links below.  Keep in mind that there are many other proposals being developed by our ICC working group and others.

IEBC Healthcare for BCAC December 11 2018

16-169 IEBC BCC Worksheet October 2-3 2018

There are other many other issues we have been tracking.  The foregoing simply presents the level of detail and subtlety that is noteworthy.

On Tuesday the ICC has released its the complete monograph for use at the Group B Committee Action Hearings, April 28-May 8 at the Albuquerque Convention Center:

2019 Group B Proposed Changes

It is a large document — 2919 pages — so keep that in mind when accessing it.  There are many issues affecting #TotalCostofOwnership of the education facility industry so we will get cracking on it again next week.   See our CALENDAR for the next online teleconference.  Use the login credentials at the upper right of our home page.

Finally, we persist in encouraging education industry facility managers (especially those with operations and maintenance data) to participate in the ICC code development process.  You may do so by CLICKING HERE.   Real asset managers for school districts, colleges, universities and technical schools in the Albuquerque region should take advantage of the opportunity to observe the ICC code-development process.   The Group B Hearings are usually webcast — and we will signal the link to the 10-day webcast when it becomes available — but the experience of seeing how building codes are determined is enlightening when you can watch it live and on site.

 

Issue: [16-169]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony, Jack Janveja, Richard Robben

#StandardsNewMexico


LEARN MORE:

ICC Group B Code Development Schedule

Little Big Horn College

 

 

 

 

Finish Carpentry Installation

University of Southern California

The Architectural Woodwork Institute (AWI) seeks to be the global leader in architectural woodwork standards and related interior finishes.   It has released a redline for public review and comment its standard AWI 0620 Finish Carpentry/Installation.   AWI 0620 is written to provide comprehensive guidelines for the installation and finishing of architectural woodwork and related interior products.  This standard should be important to the largest non-residential building construction market in the United States.

Comments are due  August 20th.  You may obtain an electronic copy from: agoodin@awinet.org.  Send your comments to the same email address (with copy to psa@ansi.org).  All consensus standards involving the architectural trades are on the agenda of our weekly Open Door teleconference — every Wednesday, 11 AM Eastern time  (CLICK HERE to log in).  Additionally, we have set aside an hour per month to run through all consensus documents that are referenced in typical design, construction, operations & maintenance contracts.  The next teleconference is scheduled for July 23rd, 11 AM Eastern time, as described in the link below:

Design Guidelines & Specifications

Issue: [18-189]

Category; Architectural

ANSI Standards Action Notice | PDF Page 7


McMaster University

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content