Category Archives: Language

Loading
loading...

Conan O’Brian

HOME

 

Charlie Kirk (August 12, 2025): “Has U.S. President Donald Trump gone too far?”

Timon of Athens

Integrated Planning Glossary

§

Attendees of the SCUP 2025 North Atlantic Symposium sit on the Commons in Columbia Business School and smile.

The Society of College and University Planning was founded in 1965 at the University of Michigan in Ann Arbor during an informal gathering of campus planners frustrated with the lack of professional exchange in their emerging field. Rapid postwar enrollment growth and massive campus expansion projects had created urgent needs for long-range physical planning, yet few institutions had dedicated planners or shared knowledge.
A small group, led by University of Michigan planners George J. Bruha and Frederick W Mayer met in Ann Arbor to discuss common challenges facing other State of Michigan settlements; joined by Stanford, Ohio State and the University of Illinois. They decided to create a formal organization to foster collaboration, research, and professional development. In 1966, with Michigan’s support, SCUP was officially established as a nonprofit with its first office on the Ann Arbor campus. Its founding principle—integrated planning linking academics, finances, and facilities—remains central today.

Integrated Planning Glossary


Early operations benefited from administrative support (aegis) provided by the University of Michigan, including office space and resources in Ann Arbor. This arrangement persisted until a financial crisis in the late 1970s (1976–1980), during which SCUP relocated to New York.

The decoupling—marking full operational and administrative independence from the University of Michigan—occurred in 1980, when SCUP returned to Ann Arbor as a self-sustaining nonprofit headquartered at a separate location –1330 Eisenhower Place — less than a mile walk from Standards Michigan‘s front door at 455 East Eisenhower.

* Of the 220 ANSI Accredited Standards Developers, the State of Michigan ranks 3rd in the ranking of U.S. states with the most ANSI-accredited standards developers (ASDs) headquartered there; behind the Regulatory Hegemons of California and ChicagoLand and excluding the expected cluster foxtrot of non-profits domiciled in the Washington-New York Deep State Megalopolis.  Much of Michigan’s presence in the private consensus standards space originates from its industrial ascendency through most of the 1900’s.

Lingua Franca

Plain Writing Act of 2010

White House: Designating English as the Official Language of The United States

2026 National Electrical Code Article 100 Definitions Public Input Transcript (Definitions)

2026 National Electrical Code Article 100 Definitions Public Comment Transcript (Definitions)


“The English genius is essentially eclectic;

it borrows from everywhere and from every time.”

— Peter Ackroyd | 2004  Albion: the origins of the English imagination

“The Tower of Babel” 1563 | Pieter Bruegel the Elder

 

“Wer von Fremdsprachen nichts versteht, kennt seine eigenen nichts.”

– Johann Wolfgang von Goethe

 

Disagree with someone and cannot persuade them?  Do you need to hide your intransigence or ulterior motive? Then change the basis of discussion by changing the subject with a different definition.

This happens routinely in political discourse and rather frequently in best practice discovery and promulgation in building construction and settlement infrastructure standards[1].  Assuming all parties are negotiating in good faith resolution may lie in agreement on a common understanding of what a satisfying agreement might look like.

Admittedly, a subtle and challenging topic outside our wheelhouse[2] hence the need to improve our organization of this topic starting with today’s colloquium; with follow on sessions every month.

Starting 2025 we will organize our approach to this topic, thus:

Language 100.  Survey of linguistic basics for developing codes, standards and regulations.  Many vertical incumbents have developed their own style manuals

Language 200.  Electrotechnical vocabulary

Language 300.  Architectural and Allied trade vocabulary

Language 400.  The language of government regulations; the euphemisms of politicians with influence over the built environment

Language 500.  Advanced topics such as large language models or spoken dialects such as “High Michigan” — arguably, the standard American dialect where it applies to the standards listed above.

Naming & Signs


It may not be obvious how profound the choice of words and phrases have on leading practice discovery and promulgation.  For example, “What is Gender” determines the number, placement and functionality of sanitary technologies in housing, hospitals and sporting.   The United States has a Supreme Court justice that cannot define “woman”

As always, we will respond to public consultation opportunities wherever we can find them.  Some organizations are better than this than others.

Large Language Models

Glossary: Education

Examples of Variations in Translations of Homer’s Odyssey

Banished Words 2024

Today we limit our discussion to language changes in the catalogs of ANSI-accredited standards developers whose titles have the most influence over the interoperability of safety and sustainability technologies that create and sustain the built environment of educational settlements.

American Institute of Architects: Definitions for Building Performance 

ASHRAE International

Language Proficiency

International Code Council

Institute of Electrical and Electronic Engineers

National Fire Protection Association

Qu’est-ce qu’une nation?

Using tasks in language teaching

print(“Python”)

Love and Mathematics

The Guy Who Over-Pronounces Foreign Words

Every building construction discipline has its own parlance and terms of art.

This is enough for a one-hour session and, depending upon interest, we will schedule a breakout session outside of our normal “daily” office hours.  Use the login credentials at the upper right of our home page.

ΒΙΒΛΙΟΘΗΚΕΣ

Starting 2024 and running into 2025 we will break down this topic further, starting with construction contract language — Lingua Franca 300:

“Standard” History

History of the English Speaking Peoples

Language Proficiency

Geomatics

Large Language Models

Travels with the Sundry Folk

Reflections on the verb “to be”

Banished Words 2024

Forbidden Words

Using tasks in language teaching

William Tyndale: The Father of Modern English

“Music does an end run around language” — James Taylor

Electropedia: The World’s Online Electrotechnical Vocabulary

Standard Definition: “Developing” Country

The Guy Who Over-Pronounces Foreign Words

ANSI Acronymn Dictionary

Footnotes:

(1) The United States government defines a “Green Building” as a building that has been designed, constructed, and operated in a way that reduces or eliminates negative impacts on the environment and occupants. The government has established various standards and certifications that buildings can achieve to be considered “green.”

The most widely recognized green building certification in the United States is the Leadership in Energy and Environmental Design (LEED) certification, which is administered by the U.S. Green Building Council (USGBC). To achieve LEED certification, a building must meet certain standards related to sustainable site development, water efficiency, energy efficiency, materials selection, and indoor environmental quality.

In addition to the LEED certification, there are other programs and standards that can be used to measure and certify the sustainability of buildings, such as the Green Globes rating system and the Living Building Challenge.

Overall, the goal of green building is to create buildings that are not only environmentally sustainable but also healthier, more comfortable, and more efficient for occupants, while reducing energy consumption and greenhouse gas emissions. By promoting green building practices, the U.S. government aims to reduce the environmental impact of the built environment and move towards a more sustainable future.

(2) The U.S. Green Building Council is a conformance organization.  See the discussion our ABOUT for background on incumbent stakeholders.

print(“Python”)

Python 3.14.0 was released for public use October 7th.

 

“Python is the programming equivalent

of a Swiss Army Knife.”

— Some guy

 

The Python Standard Library

Open source standards development is characterized by very open exchange, collaborative participation, rapid prototyping, transparency and meritocracy.   The Python programming language is a high-level, interpreted language that is widely used for general-purpose programming. Python is known for its readability, simplicity, and ease of use, making it a popular choice for beginners and experienced developers alike.  Python has a large and active community of developers, which has led to the creation of a vast ecosystem of libraries, frameworks, and tools that can be used for a wide range of applications. These include web development, scientific computing, data analysis, machine learning, and more.

Another important aspect of Python is its versatility. It can be used on a wide range of platforms, including Windows, macOS, Linux, and even mobile devices. Python is also compatible with many other programming languages and can be integrated with other tools and technologies, making it a powerful tool for software development.  Overall, the simplicity, readability, versatility, and large community support of Python make it a valuable programming language to learn for anyone interested in software development including building automation.

As open source software, anyone may suggest an improvement to Python(3.X) starting at the link below:

Python Enhancement Program

Python Download for Windows

Python can be used to control building automation systems. Building automation systems are typically used to control various systems within a building, such as heating, ventilation, air conditioning, lighting, security, and more. Python can be used to control these systems by interacting with the control systems through the building’s network or other interfaces.

There are several Python libraries available that can be used for building automation, including PyVISA, which is used to communicate with instrumentation and control systems, and PyModbus, which is used to communicate with Modbus devices commonly used in building automation systems. Python can also be used to develop custom applications and scripts to automate building systems, such as scheduling temperature setpoints, turning on and off lights, and adjusting ventilation systems based on occupancy or other variables. Overall, Python’s flexibility and versatility make it well-suited for use in building automation systems.

Subversion®

Building Automation & Control Networks

International Building Code Definitions: Chapter 2

“The Tower of Babel” 1563 | Pieter Bruegel the Elder

Widely accepted definitions (sometimes “terms of art”) are critical in building codes because they ensure clarity, consistency, and precision in communication among architects, engineers, contractors, and regulators.  Ambiguity or misinterpretation of terms like “load-bearing capacity,” “fire resistance,”  “egress” or “grounding and bonding”  could lead to design flaws, construction errors, or inadequate safety measures, risking lives and property.
“Standardized” definitions — by nature unstable — create a shared language that transcends local practices or jargon, enabling uniform application and enforcement across jurisdictions.  Today at the usual hour we explore the nature and the status of the operational language that supports our raison d’être of making educational settlements safer, simpler, lower-cost and longer-lasting.  

 

2021 IBC Chapter 2: Definitions

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Group B Documents

Complete Monograph (2650 pages) | Note our proposal on Page 754

Standards Curricula Program

NIST Standards Coordination Office Curricula Development Cooperative Agreement Program.

How to Apply | Awardees 2012-2025 | News Items

NIST Headquarters (Click on image)

 

NIST continues its Standards Curriculum program through the Standards Coordination Office Curricula Development Cooperative Agreement Program (SCO CD CAP), formerly known as the Standards Services Curricula Development Cooperative Agreement Program.  This ongoing initiative, started in 2012 (initially as Education Challenge Grants), funds U.S. colleges and universities to develop and integrate undergraduate and/or graduate-level curricula on documentary standards, standards development, and standardization into courses, modules, seminars, and learning resources.  The University of Michigan is a past recipient of a standards education award through this program.

The most recent funding round was for Fiscal Year 2025 (FY25):

  • The Notice of Federal Funding Opportunity (NOFO) was released on January 14, 2025.
  • Applications were due by April 14, 2025.
  • NIST anticipated awarding up to 8 grants, each up to $100,000, with project periods of up to 3 years (potentially extending into 2027–2028).

Projects funded under FY25 involve curriculum development and implementation that may continue into 2026 and beyond, including required workshops.

As of early 2026, no new Notice of Federal Funding Opportunity (NOFO) has been announced for FY2026. The program has historically issued funding rounds annually or near-annually, with recent awards in prior years (e.g., 2024 awards totaling over $1.1 million to 8 universities). However, due to proposed budget reductions for NIST in FY2026, future rounds may be impacted or delayed.


2024 Update: NIST Awards Funding to 8 Universities to Advance Standards Education


The Standards Coordination Office of the National Institute of Standards and Technology conducts standards-related programs, and provides knowledge and services that strengthen the U.S. economy and improve the quality of life.  Its goal is to equip U.S. industry with the standards-related tools and information necessary to effectively compete in the global marketplace. 

Every year it awards grants to colleges and universities through its Standards Services Curricula Cooperative Agreement Program  to provide financial assistance to support curriculum development for the undergraduate and/or graduate level. These cooperative agreements support the integration of standards and standardization information and content into seminars, courses, and learning resources. The recipients will work with NIST to strengthen education and learning about standards and standardization. 

The 2019 grant cycle will require application submissions before April 30, 2019 (contingent upon normal operation of the Department of Commerce).  Specifics about the deadline will be posted on the NIST and ANSI websites.  We will pass on those specifics as soon as they are known.

The winners of the 2018 grant cycle are Bowling Green State University, Michigan State University,  Oklahoma State University, and Texas A&M University. (Click here)

The University of Michigan received an award during last year’s grant cycle (2017).   An overview of the curriculum — human factors in automotive standards  — is linked below:

NIST Standards Curricula INTRO Presentation _ University of Michigan Paul Green

Information about applying for the next grant cycle is available at this link (Click here) and also by communicating with Ms. Mary Jo DiBernardo (301-975-5503; maryjo.dibernardo@nist.gov)

LEARN MORE:

Click here for link to the previous year announcement.

Technical Requirements for Weighing & Measuring Devices

Three Felonies a Day: How the Feds Target the Innocent

 

Design Standard Readability

Fry readability formula

How Consistent Are the Best-Known Readability Equations in Estimating the Readability of Design Standards?

Shixiang Zhou & Heejin Jeong
Industrial and Operations Engineering Department, University of Michigan, Ann Arbor, MI, USA
Transportation Research Institute Driver Interface Group
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

 

Abstract.  Research problem: Readability equations are widely used to compute how well readers will be able to understand written materials. Those equations were usually developed for nontechnical materials, namely, textbooks for elementary, middle, and high schools. This study examines to what extent computerized readability predictions are consistent for highly technical material – selected Society of Automotive Engineers (SAE) and International Standards Organization (ISO) Recommended Practices and Standards relating to driver interfaces. Literature review: A review of original sources of readability equations revealed a lack of specific criteria in counting various punctuation and text elements, leading to inconsistent readability scores. Few studies on the reliability of readability equations have identified this problem, and even fewer have systematically investigated the extent of the problem and the reasons why it occurs.  Research questions:

(1) Do the most commonly used equations give identical readability scores?
(2) How do the scores for each readability equation vary with readability tools?
(3) If there are differences between readability tools, why do they occur?
(4) How does the score vary with the length of passage examined?

Method: Passages of varying lengths from 12 selected SAE and ISO Recommended Practices and Standards were examined using five readability equations (Flesch-Kincaid Grade Level, Gunning Fog Index, SMOG Index, Coleman-Liau Index, and Automated Readability Index) implemented five ways (four online readability tools and Microsoft Word 2013 for Windows). In addition, short test passages of text were used to understand how different readability tools counted text elements, such as words and sentences. Results and conclusions: The mean readability scores of the passages from those 12 SAE and ISO Recommended Practices and Standards ranged from the 10th grade reading level to about 15th. The mean grade reading levels computed across the websites were: Flesch-Kincaid 12.8, Gunning Fog 15.1 SMOG 12.6, Coleman-Liau 13.7, and Automated Readability Index 12.3. Readability score estimates became more consistent as the length of the passage examined increased, with no noteworthy improvements beyond 900 words. Among the five readability tools, scores typically differed by two grade levels, but the scores should have been the same. These differences were due to how compound and hyphenated words, slashes, numbers, abbreviations and acronyms, and URLs were counted, as well other punctuation and text elements. These differences occurred because the sources for these equations often did not specify how to score various punctuation and text elements. Of the tools examined, the authors recommend Microsoft Word 2013 for Windows if the Flesch-Kincaid Grade Level is required.

 

“Stopping By Woods on a Snowy Evening”

Randall Thompson’s “Frostiana” is a choral cycle based on the poems of Robert Frost. The cycle consists of settings for mixed chorus and piano, and it was premiered in 1959. “Frostiana” was commissioned to celebrate the bicentennial of the town of Amherst, Massachusetts, and it features seven of Frost’s poems set to music by Thompson.

“Stopping by Woods on a Snowy Evening” is one of the poems included in the “Frostiana” cycle. The composition captures the reflective and contemplative mood of Frost’s poem, where the narrator pauses to admire the beauty of a snowy evening in a quiet forest. Randall Thompson’s musical setting adds another layer to Frost’s words, enhancing the emotional impact of the poem.

Thompson’s approach in “Frostiana” is characterized by its accessibility and tonal clarity. His settings aim to convey the meaning and atmosphere of Frost’s poetry through the expressive power of choral music. The entire “Frostiana” cycle is a celebration of both Thompson’s skill as a composer and Frost’s enduring contribution to American literature.

Acoustics

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content