Category Archives: Snow & Ice

Loading
loading...

Snow Management

“A Morning Snow–Hudson River” 1910 George Wesley Bellows | Smithsonian American Art Museum

This time of year in the Northern Hemisphere we keep an eye on snow management  standards; among them titles developed by the Accredited Snow Contractors Association.  The barriers to entry into this domain are relatively low and, arguably undisciplined; hence the need for standards setting.  Even when only partially adopted, use of ANSI accredited standards reduces the “wheel reinvention” that is common to the business side of the education industry when new initiatives, or continuous improvement programs are undertaken without consideration of already existing leading practice discovery by ANSI-accredited technical committees.  Start here:

ASCA Standards Home Page

The parent title for the emergent ASCA bibliography is System Requirements for Snow and Ice Management Services; free to ASCA members.  The current version is dated 2014 and will likely be updated and/or re-affirmed.  The circumstances of the pandemic has slowed the work of many standards setting committees.  The safety and sustainability concepts remain intact, however.  Among them:

  • If snow can be removed from a lot or hard surface and appropriate room exists, always push the snow as far back as possible beyond the curb or lot edge to make room for additional snow.
  • If snow cannot be removed from a lot or hard surface, always place snow piles on a predetermined spot approved by the client and marked on the snow contractor’s preseason site report.  
  • Do not pile snow in a handicap parking space.
  • Do not bury or plow snow onto a fire hydrant, post indicator valve, or fire hookup along the building wall.
  • Avoid placement of snow piles where thaw/melt off can run across the parking lot surface. Try to place piles near drain grates to avoid icy situations during thaw-and-refreeze periods.
  • Do not push snow against a building.
  • Do not block building doorways or emergency exits.
  • Do not block pedestrian walks or paths with snow piles.
  • Do not push snow onto motor vehicles.
  • Do not plow snow in front of or bury trash containers. Sidewalk labor must shovel inside trash container enclosure for access to the doors. If the container is not in an enclosure, create a clear path to the access doors or panels.

"Liberty, when it begins to take root, is a plant of rapid growth" - (Letter to James Madison, March 2, 1788)“The cold was our pride, the snow was our beauty.” — F. Scott Fitzgerald ('Wiinter Dreams' 1922)

ASCA has more recently released another title — Standard Practice for Procuring and Planning Snow & Ice Management Services — that seems (by its title alone) to be a companion consensus product.  From its prospectus:

This standard of practice covers essential procuring and planning for snow and ice management services. Standards for procuring and planning are essential for business continuity and to improve safety for patrons, tenants, employees, and others in the general public. Knowing how to describe service requirements in a snow and ice management request for proposal (RFP) is an important component to providing effective services, particularly where winter weather is a variable. This standard practice provides guidance on the snow and ice management procurement and planning process to aid in the creation of RFPs, contracts, agreements, and monitoring procedures. This standard will not be submitted for consideration as an ISO, IEC, or ISO/IEC JTC-1 standard.

Apart from these titles, we do not see any recent happening in the ASCA standards setting enterprise.  We will pass information along as it becomes available.  Alternatively, you may communicate directly with ASCA, 5811 Canal Road  Valley View, OH 44125, Ph: (800) 456-0707.  Most education communities employ a combination of permanent and contract staff for these services.

We maintain the ASCA bibliography on our Snow & Ice colloquia  See our CALENDAR for the next online meeting; open to everyone.

Issue: [13-104]

Category:  Grounds and Landscaping, Exterior, Public Safety, Risk Management

Colleagues: John Lawter, Richard Robben

More>>

ARCHIVE / Snow & Ice


 

Heat Tracing Installation

“Vue de toits (effet de neige)” 1878 Gustave Caillebotte

One of the core documents for heat tracing is entering a new 5-year revision cycle; a consensus standard that is especially relevant this time of year because of the personal danger and property damage that is possible in the winter months.  Education communities depend upon heat tracing for several reasons; just a few of them listed below:

  • Ice damming in roof gutters that can cause failure of roof and gutter structural support
  • Piping systems for sprinkler systems and emergency power generation equipment
  • Sidewalk, ramp and stairway protection

IEEE 515 Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Industrial Applications is one of several consensus documents for trace heating technology.   Its inspiration originates in the petrochemical industry but its principles apply to all education facilities exposed to cold temperature and snow.   From its prospectus:

This standard provides requirements for the testing, design,installation, and maintenance of electrical resistance trace heating in general industries as applied to pipelines, vessels, pre-traced and thermally insulated instrument tubing and piping, and mechanical equipment. The electrical resistance trace heating is in the form of series trace heaters, parallel trace heaters, and surface heating devices. The requirements also include test criteria to determine the suitability of these heating devices utilized in unclassified (ordinary) locations.

Its principles can, and should be applied with respect to other related documents:

National Electrical Code Article 427

NECA 202 Standard for Installing and Maintaining Industrial Heat Tracing Systems

IEC 62395 Electrical resistance trace heating systems for industrial and commercial applications

 ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings

Lowell House / Harvard University

We are happy to explain the use of this document in design guidelines and/or construction specifications during any of our daily colloquia.   We generally find more authoritative voices in collaborations with the IEEE Education & Healthcare Facilities Committee which meets 4 times per month in Europe and in the Americas.  We maintain this title on the standing agenda of our Snow & Ice colloquia.  See our CALENDER for the next online meeting.

Issue: [18-331]

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

Category: Electrical, #SmartCampus


LEARN MORE:

Good Building Practice for Northern Facilities

Electrical Heat Tracing:International Harmonization Now and in the Future, IEEE Industry Standards Magazine, May/June 2002 pages 50-56

 

Electrical heat tracing: international harmonization-now and in the future

 

Electrical heat tracing: international harmonization-now and in the future

C. Sandberg

Tyco Thermal Controls

N.R. Rafferty – M. Kleinehanding – J.J. Hernandez

E.I. DuPont de Nemours & Company, Inc 

 

Abstract:  In the past, electrical heat tracing has been thought of as a minor addition to plant utilities. Today, it is recognized as a critical subsystem to be monitored and controlled. A marriage between process, mechanical, and electrical engineers must take place to ensure that optimum economic results are produced. The Internet, expert systems, and falling costs of instrumentation will all contribute to more reliable control systems and improved monitoring systems. There is a harmonization between Europe and North America that should facilitate design and installation using common components. The future holds many opportunities to optimize the design.

CLICK HERE to order complete paper

 


Heat Tracing Installation

Industrial electroheating and electromagnetic processing

Pipe Heating

Heat Tracing

Heat Tracing Product Standard

Winter weather pipe-breaking and subsequent water flooding incidents on educational campuses around the world draw attention to Underwriters Laboratory product standard UL 515 Standard for Electrical Resistance Trace Heating for Commercial Applications which was last revised in July 2015.    From the home page of UL 515: the scope is as follows:

    (UL 515) requirements cover electrical resistance trace heating for commercial applications as applied to piping, vessels, traced tube bundles, and mechanical equipment. Trace heating includes heating panels and associated parts. This equipment is intended for installation in ordinary locations in accordance with the following installation guidelines:

  • National Electrical Code, ANSI/NFPA 70, Article 427
  • IEEE Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Commercial Applications, IEEE 515.1.

    Trace heating covered by this Standard is intended for applications where it is exposed to weather, unless specific markings and instructions limit the applications.

    Trace heating may be installed on metal or rigid plastic pipes. Unless specific recommendations are made for the plastic pipe material to be heated, plastic pipes are considered to have a maximum long-term thermal exposure limit of 50°C (122°F).

UL 515 is on a 5-year revision cycle; though comments on its improvement may be directed at any time to Julio Morales Julio.Morales@ul.com.    A review of the Standards Technical Panel suggests that User-Interest input — quite possibly product success and failure information — would be welcomed.   

In future posts, we will sort through the interdependency of related NFPA and ASTM standards on this technology

Issue: [18-10]

Category: Architectural, Electrical,  Structural, Facility Asset Managemet

Contact: Mike Anthony, Jim Harvey, Richard Robben


 

 

 

Du froid

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.  Without electric heat tracing; much of the earth would be uninhabitable.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

Heat Tracing for Piping SpecificationNECA Standards (N.B. Link unstable)

2026 NEC CMP-17 Public Input Report | 2026 NEC CMP-17 Second Draft Report

Northern Michigan University | Marquette County

Today we review the literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.


There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Somewhat related:

Building Construction in Cold Weather

AI Generated | See our LIVE construction cameras

Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,

1. Cold-Weather Concrete Technology

    • Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
    • Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
    • Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
    • Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.

2. Temporary Heating Solutions

    • Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
    • Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.

3. Advanced Building Materials

    • Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
    • Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.

4. Insulation Techniques

    • Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
    • Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.

5. Ground Thawing Technologies

    • Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
    • Steam Thawing: Direct steam application to melt snow or thaw frozen soil.

6. Lighting Solutions

    • High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.

7. Weather-Resistant Machinery

    • Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.

8. Workforce Adaptations

    • Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
    • Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.

9. Snow and Ice Management

    • Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
    • Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.

The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:

1. Cold Stress and Temperature Exposure

  • General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
  • OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.

2. PPE (Personal Protective Equipment)

  • 29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
  • 29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.

3. Walking and Working Surfaces

  • 29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
  • 29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.

4. Snow and Ice Removal

  • Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.

5. Powered Equipment

  • 29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.

6. Excavations and Frost Heave

  • 29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.

7. Temporary Heating

  • 29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.

8. Illumination

  • 29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.

9. Emergency Preparedness

  • First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.

10. Hazard Communication and Training

  • 29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.

By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.


Related:

Snow Load

Electrical heat tracing: international harmonization-now and in the future

Heat Tracing Installation

Pipe Heating

Snow & Ice Management

Incredible snow removal

Snow Load Calculator

“Among famous traitors of history one might mention the weather.”

Ilka Chase, The Varied Airs of Spring

 

Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-22)

ASCE Hazard Tool

Quick & Dirty Snow Load Calculator

Call for public proposals for the 2028 edition

Structural Design

 

 

Provision of Slip Resistance on Walking/Working Surfaces

Wild Swimming

 

INTERVIEW: Student Ellie Ford on founding the University’s first cold water swimming group

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Port Meadow is absolutely beautiful and a wonderful place to swim. We often swim in a different spot from other open water swimming groups in order to create a more relaxed environment – especially for our beginners. We do special beginners swims on Saturdays, to ease new members into the practise slowly and very carefully.

Safety is paramount, so I’ll walk them in to the water and they can immerse themselves as much as they want. We never allow anyone to jump or dive into cold water – the shock can cause a swimmer to gulp for air and subsequently ingest water; it’s always a gentle process.” — Ellie

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sex Difference in Female and Male Ice Swimmers

Ice Swimming

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Standards Michigan
error: Content is protected !!
Skip to content