More
Pacific University Art & Design
Several universities host federal enterprises (laboratories, wildlands, Presidential libraries*, etc.) that must conform to Title 40 United States Code, Public Buildings, Property, and Works Paragraph 486(c) provides statutory authority for the head of each executive agency to issue orders and directives necessary to manage the Government’s property.
Code of Federal Regulations (CFR) 41 Federal Property Management Regulations Part 101, Subpart 20.5 “Physical Protection”, prescribes policies and methods for physically protecting buildings and grounds operated by GSA and other Federal Executive agencies. The Department of the Interior’s property management regulations are in Part 114 of CFR 41.
Museum Management Chapter 14: Museum Collections Security
Standard Methods of Fire Tests for Flame Propagation of Textiles and Films
* There are only a few education communities that host Presidential Libraries:
Herbert Hoover Presidential Library and Museum – West Branch, Iowa (Hoover Institution, Stanford University)
Lyndon B. Johnson Presidential Library and Museum – Austin, Texas (The University of Texas at Austin)
Gerald R. Ford Presidential Library and Museum – Ann Arbor, Michigan (The University of Michigan)
George H. W. Bush Presidential Library and Museum – College Station, Texas (Texas A&M University)
With acoustic considerations a substantial contributor to the effectiveness of learning spaces — classrooms, lecture hall, performance arts and athletic venues, etc. — we follow action in the Acoustical Society of America (ASA) suite of ANSI-accredited standards.
For example, building codes in the United States identify horizontal and vertical acoustic insulation between floors and between walls, respectively, as design considerations. Section 1206.2 of the International Building Code deal with horizontal and vertical wall sealant applications for “airborne sound” mitigation, for example. Fire protection and mass notification systems identified in NFPA 72 and UL 2572 depend upon alarms actually being heard by the occupants underscore the importance of acoustic design. When lively art spaces are also instructional spaces we seek to understand the standard of care for acoustic design of classroom spaces. Of particular interest to us in the ASA bibliography is the title linked below:
This is a fairly stable standard; though other sound related technologies we cover in other sound related technologies (ISO TC/43 Acoustics and IEC Electroacoustics TC 29). Last year’s update was required by ANSI and we had no comments to submit; absent queries from students, faculty and staff. It is wise to keep it on our radar, however, given the step-change in education communities owed to the pandemic.
On your own you may communicate with Caryn Mennigke at ASA: (631) 390-0215, [email protected]. The ASA uses ANSI Standards Action for issuing live public consultation notices.
Since acoustic technologies cut across many disciplines we maintain it on the standing agenda of our Construction, Lively Art and Nota Bene teleconferences. See our CALENDAR next scheduled meeting; open to everyone.
Issue: [19-140]
Category: Academics, Architectural, #SmartCampus
Colleagues: Mike Anthony, Kristen Murphy
LEARN MORE:
Room acoustic design, measurement, and simulation techniques to reduce hospital noises within patients’ environment | Mojtaba Navvab, University of Michigan
Acoustical/Performance Criteria, Design Requirements, and Guidelines for Schools International Code Council
Abstract: In this paper, correlation coefficients between the five objective estimates of speech quality, on the one hand, and the Speech Transmission Index as speech intelligibility measure, on the other hand, were estimated. This comparison was performed using binaural room impulse responses corresponded to different points of the three university auditoriums of different sizes. Speech quality was assessed using intrusive speech quality measures: Segmental Signal-to-Noise Ratio, Logarithmic Spectral Distortion, Frequency-Weighted Segmental Signal-to-Noise Ratio, Bark Spectral Distortion, and Perceptual Evaluation of Speech Quality. The formation of signals distorted by reverberation was performed by convolving of pure signals with binaural room impulse responses of the premises. A high level of correlation (0.6-0.99) of Bark Spectral Distortion estimates with estimates of the Speech Transmission Index for rooms of different sizes was revealed. Correlation of estimates (0.65-0.98) of Frequency-Weighted Segmental Signal-to-Noise ratio with Speech Transmission Index estimates was observed for medium and large rooms. Significant correlation (0.96-0.99) of Perceptual Evaluation of Speech Quality with Speech Transmission Index estimates was observed only for large audiences. At the same time, estimates of the Segmental Signal-to-Noise Ratio and Logarithmic Spectral Distortion turned out to be practically uncorrelated with Speech Transmission Index estimates for all studied premises.
CLICK HERE to order complete paper
The IEEE Education & Healthcare Facilities Committee has completed a chapter on recommended practice for designing, building, operating and maintaining campus exterior lighting systems in the forthcoming IEEE 3001.9 Recommended Practice for the Design of Power Systems for Supplying Commercial and Industrial Lighting Systems; a new IEEE Standards Association title inspired by, and derived from, the legacy “IEEE Red Book“. The entire IEEE Color Book suite is in the process of being replaced by the IEEE 3000 Standards Collection™ which offers faster-moving and more scaleable, guidance to campus power system designers.
Campus exterior lighting systems generally run in the 100 to 10,000 fixture range and are, arguably, the most visible characteristic of public safety infrastructure. Some major research universities have exterior lighting systems that are larger and more complex than cooperative and municipal power company lighting systems which are regulated by public service commissions.
While there has been considerable expertise in developing illumination concepts by the National Electrical Manufacturers Association, Illumination Engineering Society, the American Society of Heating and Refrigeration Engineers, the International Electrotechnical Commission and the International Commission on Illumination, none of them contribute to leading practice discovery for the actual power chain for these large scale systems on a college campus. The standard of care has been borrowed, somewhat anecdotally, from public utility community lighting system practice. These concepts need to be revisited as the emergent #SmartCampus takes shape.
Electrical power professionals who service the education and university-affiliated healthcare facility industry should communicate directly with Mike Anthony ([email protected]) or Jim Harvey ([email protected]). This project is also on the standing agenda of the IEEE E&H committee which meets online 4 times monthly — every other Tuesday — in European and American time zones. Login credentials are available on its draft agenda page.
Issue: [15-199]
Category: Electrical, Public Safety, Architectural, #SmartCampus, Space Planning, Risk Management
Contact: Mike Anthony, Kane Howard, Jim Harvey, Dev Paul, Steven Townsend, Kane Howard
LEARN MORE:
“Baseball is ninety percent mental
and the other half is physical.”
– Yogi Berra
After athletic facility life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110, the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site. Sometimes concepts to meet both life safety and business objectives merge.
During the spring baseball season the document linked below provides guidance for illumination designers, contractors and facility managers:
Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States. We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises. We cover the objectives of the energy conservation advocates in separate posts; notably advocates using the International Code Council and the ASHRAE suite to advance their agenda to press boxes and the entire baseball experience (interior and exterior) site in separate posts.
We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.
See our CALENDAR for our next Sport colloquium. We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.
Issue: [15-138]*
Category: Electrical, Energy Conservation, Energy, Athletics & Recreation
Colleagues: Mike Anthony, Jim Harvey, Jose Meijer, Scott Gibbs, George Reiher
More
Comparison of MH and LED performance for sport lighting application
A novel smart energy management system in sports stadiums
Tracking pitches for broadcast television
This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.
More
Texas Education Agency: Fine Arts Standards
Texas Tech: Facilities Planning & Construction
“Public art is form of street life, a means to articulate the implicit values of a city when its users occupy the place of determining what the city is.” — Malcolm Miles
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwB pic.twitter.com/GkAXrHoQ9T
— USPTO (@uspto) July 13, 2023
Standards Michigan Group, LLC
2723 South State Street | Suite 150
Ann Arbor, MI 48104 USA
888-746-3670