Several universities host federal enterprises (laboratories, wildlands, Presidential libraries*, etc.) that must conform to Title 40 United States Code, Public Buildings, Property, and Works Paragraph 486(c)provides statutory authority for the head of each executive agency to issue orders and directives necessary to manage the Government’s property.
With acoustic considerations a substantial contributor to the effectiveness of learning spaces — classrooms, lecture hall, performance arts and athletic venues, etc. — we follow action in the Acoustical Society of America (ASA) suite of ANSI-accredited standards.
For example, building codes in the United States identify horizontal and vertical acoustic insulation between floors and between walls, respectively, as design considerations. Section 1206.2 of the International Building Code deal with horizontal and vertical wall sealant applications for “airborne sound” mitigation, for example. Fire protection and mass notification systems identified in NFPA 72 and UL 2572 depend upon alarms actually being heard by the occupants underscore the importance of acoustic design. When lively art spaces are also instructional spaces we seek to understand the standard of care for acoustic design of classroom spaces. Of particular interest to us in the ASA bibliography is the title linked below:
This is a fairly stable standard; though other sound related technologies we cover in other sound related technologies (ISO TC/43 Acoustics and IEC Electroacoustics TC 29). Last year’s update was required by ANSI and we had no comments to submit; absent queries from students, faculty and staff. It is wise to keep it on our radar, however, given the step-change in education communities owed to the pandemic.
On your own you may communicate with Caryn Mennigke at ASA: (631) 390-0215, [email protected]. The ASA uses ANSI Standards Action for issuing live public consultation notices.
Since acoustic technologies cut across many disciplines we maintain it on the standing agenda of our Construction, Lively Art and Nota Bene teleconferences. See our CALENDAR next scheduled meeting; open to everyone.
Abstract: In this paper, correlation coefficients between the five objective estimates of speech quality, on the one hand, and the Speech Transmission Index as speech intelligibility measure, on the other hand, were estimated. This comparison was performed using binaural room impulse responses corresponded to different points of the three university auditoriums of different sizes. Speech quality was assessed using intrusive speech quality measures: Segmental Signal-to-Noise Ratio, Logarithmic Spectral Distortion, Frequency-Weighted Segmental Signal-to-Noise Ratio, Bark Spectral Distortion, and Perceptual Evaluation of Speech Quality. The formation of signals distorted by reverberation was performed by convolving of pure signals with binaural room impulse responses of the premises. A high level of correlation (0.6-0.99) of Bark Spectral Distortion estimates with estimates of the Speech Transmission Index for rooms of different sizes was revealed. Correlation of estimates (0.65-0.98) of Frequency-Weighted Segmental Signal-to-Noise ratio with Speech Transmission Index estimates was observed for medium and large rooms. Significant correlation (0.96-0.99) of Perceptual Evaluation of Speech Quality with Speech Transmission Index estimates was observed only for large audiences. At the same time, estimates of the Segmental Signal-to-Noise Ratio and Logarithmic Spectral Distortion turned out to be practically uncorrelated with Speech Transmission Index estimates for all studied premises.
Campus exterior lighting systems generally run in the 100 to 10,000 fixture range and are, arguably, the most visible characteristic of public safety infrastructure. Some major research universities have exterior lighting systems that are larger and more complex than cooperative and municipal power company lighting systems which are regulated by public service commissions.
While there has been considerable expertise in developing illumination concepts by the National Electrical Manufacturers Association, Illumination Engineering Society, the American Society of Heating and Refrigeration Engineers, the International Electrotechnical Commission and the International Commission on Illumination, none of them contribute to leading practice discovery for the actual power chain for these large scale systems on a college campus. The standard of care has been borrowed, somewhat anecdotally, from public utility community lighting system practice. These concepts need to be revisited as the emergent #SmartCampus takes shape.
Electrical power professionals who service the education and university-affiliated healthcare facility industry should communicate directly with Mike Anthony ([email protected]) or Jim Harvey ([email protected]). This project is also on the standing agenda of the IEEE E&H committee which meets online 4 times monthly — every other Tuesday — in European and American time zones. Login credentials are available on its draft agenda page.
Issue: [15-199]
Category: Electrical, Public Safety, Architectural, #SmartCampus, Space Planning, Risk Management
Contact: Mike Anthony, Kane Howard, Jim Harvey, Dev Paul, Steven Townsend, Kane Howard
After athletic facility life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110, the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site. Sometimes concepts to meet both life safety and business objectives merge.
During the spring baseball season the document linked below provides guidance for illumination designers, contractors and facility managers:
Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States. We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises. We cover the objectives of the energy conservation advocates in separate posts; notably advocates using the International Code Council and the ASHRAE suite to advance their agenda to press boxes and the entire baseball experience (interior and exterior) site in separate posts.
We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.
See our CALENDAR for our next Sport colloquium. We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.
Issue: [15-138]*
Category: Electrical, Energy Conservation, Energy, Athletics & Recreation
This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.
“Public art is form of street life, a means to articulate the implicit values of a city when its users occupy the place of determining what the city is.” — Malcolm Miles
Classic British comfort food. The origin of the recipe can be traced back to the United Kingdom in the mid-20th century. The dish’s name, “bangers,” comes from the habit of sausages bursting open (banging) while cooking due to their high water content, particularly during World War II when meat was scarce, and fillers were added to sausages.
The popularity of sausages and mashed potatoes as a meal likely dates back much further in British culinary history. Sausages have been a part of British cuisine for centuries, and mashed potatoes have been consumed in the UK since potatoes were introduced to Europe in the 16th century. It has long since become the go-to meal for college students seeking a satisfying, simple, and budget-friendly option during their academic years.
Ingredients:
Pork sausages (traditional British bangers)
Potatoes (such as Russet or Yukon Gold)
Butter
Milk or cream
Salt and pepper to taste
Onion gravy (optional, for serving)
Instructions:
Start by preparing the sausages. You can grill, pan-fry, or oven-bake them until they are cooked through and nicely browned.
While the sausages are cooking, peel and chop the potatoes into chunks. Place them in a pot of salted water and bring to a boil. Cook until the potatoes are tender and can easily be pierced with a fork.
Drain the potatoes and return them to the pot. Mash the potatoes using a potato masher or a potato ricer.
Add butter and a splash of milk or cream to the mashed potatoes, and continue mashing until you achieve your desired consistency. Season with salt and pepper to taste.
Serve the cooked sausages on top of the mashed potatoes, and if desired, pour onion gravy over the dish.
The History of “Bangers and Mash” as a College Meal:
Simplicity: The dish is easy to prepare, requiring basic cooking skills and readily available ingredients, making it ideal for students who may have limited cooking facilities or time.
Affordability: Sausages and potatoes are often budget-friendly ingredients, making “Bangers and Mash” a cost-effective meal for students on tight budgets.
Comfort and Nostalgia: The dish’s hearty and comforting nature brings a sense of nostalgia and home-cooked goodness to college students, especially those living away from home for the first time.
Social Meal: “Bangers and Mash” is a dish that can be shared with friends or hallmates, making it a popular choice for communal meals in college dormitories or shared kitchens.
Overall, “Bangers and Mash” has not only been a staple in British cuisine but also a go-to meal for college students seeking a satisfying, simple, and budget-friendly option during their academic years.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T