Category Archives: @NFPA

Loading
loading...

Solarvoltaic PV Systems

“Icarus” Joos de Momper

National Electrical Code Articles 690 and 691 provide electrical installation requirements for Owner solarvoltaic PV systems that fall under local electrical safety regulations.  Access to the 2023 Edition is linked below;

2023 National Electrical Code

2026 National Electrical Code Second Draft Transcript | CMP-4

Insight into the technical problems managed in the 2023 edition can be seen in the developmental transcripts linked below:

Panel 4  Public Input Report (869 pages)

Panel 4  Second Draft Comment Report (199 pages)

The IEEE Joint IAS/PES (Industrial Applications Society & Power and Energy Society) has one vote on this 21-member committee; the only pure “User-Interest” we describe in our ABOUT.  All other voting representatives on this committee represent market incumbents or are proxies for market incumbents; also described in our ABOUT.

The 2026 National Electrical Code has entered its revision cycle.  Public input is due September 7th.

We maintain these articles, and all other articles related to “renewable” energy, on the standing agenda of our Power and Solar colloquia which anyone may join with the login credentials at the upper right of our home page.   We work close coupled with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones; also open to everyone.

 

 

 

 

Code for Fireworks Display

“Fireworks over Castel Sant’Angelo in Rome” | Jacob Philipp Hackert (1775)

At least twice a year, and during performances with flame effects, public safety departments in colleges and universities have an elevated concern about campus citizen safety, and the safety of the host community, when fireworks are used for celebration.  We find very rigorous prohibitions against the use of fireworks, weapons and explosives on campus.  Education and enforcement usually falls on facility and operation campus safety units.

That much said, we follow development, but do not advocate in NFPA 1123 Code for Fireworks Display, because it lies among a grouping of titles that set the standard of care for many college and university public safety departments that sometimes need to craft prohibitions with consideration for the business purposes of entertainment and celebration in education facilities.   NFPA 1123 is not a long document — only 22 pages of core text — but it contains a few basic considerations for display site selection, clearances and permitting that campus public safety departments will coordinate with the host community.  It references NFPA 1126, Standard for the Use of Pyrotechnics Before a Proximate Audience and NFPA 160 Standard for the Use of Flame Effects Before an Audience.

Something to keep an eye on.  The home page for this code is linked below:

NFPA 1123 Code for Fireworks Display

For a sense of the technical discussions, transcripts of two developmental stages are linked below:

Public Input Report

Public Comment Report

Public comment on 2026 Edition proposed revisions is receivable until May 30, 2024.

We maintain this title on our periodic Prometheus colloquium.  See our CALENDAR for the next online meeting.

Issue: [16-134]

Category: Public Safety

Colleagues: Mike Anthony, Jack Janveja, Richard Robben

 


More

Readings / PYROTECHNIC ARTS & SCIENCES IN EUROPEAN HISTORY

The Chemistry of Fireworks

 

Luminaires, Lampholders, and Lamps

Best wiring safety practice for the illumination of educational settlement occupancies is scattered throughout the National Electrical Code with primary consideration for wiring fire safety:

  • Article 410 – Covers the installation of luminaires (fixtures), lampholders, and lamps, including requirements for wiring, grounding, and support.
  • Article 210 – Covers branch circuit requirements, including those for lighting circuits in dwellings and commercial buildings.
  • Article 220 – Provides guidelines for calculating lighting loads.
  • Article 225 – Addresses outside lighting installations.
  • Article 240 – Covers overcurrent protection for lighting circuits.
  • Article 250 – Deals with grounding and bonding, which is essential for lighting circuits.
  • Article 300 – Covers general wiring methods that apply to lighting circuits.

We have done a fair amount of work on this topic over the years, including writing the chapter on campus outdoor lighting for the soon-to-be-released IEEE 3001.9 Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities.   

For our meeting please refer to the workspace we have set up for the 2026 Revision of the NEC:

2026 National Electrical Code Workspace

We will pick through specifics in the transcripts of Code Making Panels 10 and 18.

 

International Building Code: Chapter 12 Section 1204 Lighting

Voice Communications Devices for Use by Emergency Services

The frequency differences between public safety radio and public broadcasting radio are mainly due to their distinct purposes and requirements.

  • Public safety radio operates on VHF and UHF bands for emergency services communication These radio systems are designed for robustness, reliability, and coverage over a specific geographic area. They prioritize clarity and reliability of communication over long distances and in challenging environments. Encryption may also be employed for secure communication.
  • Public broadcasting radio operates on FM and AM bands for disseminating news, entertainment, and cultural content to the general public.  These radio stations focus on providing a wide range of content, including news, talk shows, music, and cultural programming. They often cover broad geographic areas and aim for high-quality audio transmission for listener enjoyment. Unlike public safety radio, public broadcasting radio stations typically do not require encryption and prioritize accessibility to the general public.

Standard on Fire and Emergency Service Use of Thermal Imagers, Two-Way Portable RF Voice Communication Devices, Ground Ladders, and Fire Hose, and Fire Hose Appliances

NFPA 1930 is in a custom cycle due to the Emergency Response and Responder Safety Document Consolidation Plan (consolidation plan) as approved by the NFPA Standards Council.  As part of the consolidation plan, NFPA 1930 is combining Standards NFPA 1801, NFPA 1802, NFPA 1932, NFPA 1937, and NFPA 1962.

Firefighter radio communication faces several special technical challenges due to the nature of the environment they operate in and the criticality of their tasks. Here are some of the key challenges:

  1. Interference and Signal Degradation: Buildings, debris, and firefighting equipment can obstruct radio signals, leading to interference and degradation of communication quality.
  2. Multipath Propagation: Radio signals can bounce off surfaces within buildings, causing multipath propagation, which results in signal fading and distortion.
  3. Limited Bandwidth: Firefighter radio systems often operate on limited bandwidths, which can restrict the amount of data that can be transmitted simultaneously, impacting the clarity and reliability of communication.
  4. Noise: The high noise levels present in firefighting environments, including sirens, machinery, and fire itself, can interfere with radio communication, making it difficult for firefighters to hear and understand each other.
  5. Line-of-Sight Limitations: Radio signals typically require a clear line of sight between the transmitter and receiver. However, in complex urban environments or within buildings, obstructions such as walls and floors can obstruct the line of sight, affecting signal strength and reliability.
  6. Equipment Durability: Firefighter radio equipment needs to withstand harsh environmental conditions, including high temperatures, smoke, water, and physical impacts. Ensuring the durability and reliability of equipment in such conditions is a significant challenge.
  7. Battery Life: Prolonged operations in emergency situations can drain radio batteries quickly. Firefighters need reliable battery life to ensure continuous communication throughout their mission.
  8. Interoperability: Different emergency response agencies may use different radio systems and frequencies, leading to interoperability issues. Ensuring seamless communication between various agencies involved in firefighting operations is crucial for effective coordination and response.
  9. Priority Access: During large-scale emergencies, such as natural disasters or terrorist attacks, communication networks may become congested, limiting access for emergency responders. Firefighters need priority access to communication networks to ensure they can effectively coordinate their efforts.
  10. Training and Familiarity: Operating radio equipment effectively under stress requires training and familiarity. Firefighters must be trained to use radio equipment efficiently and effectively, even in challenging conditions, to ensure clear and concise communication during emergencies.

National Institute of Standards & Technology

Testing of Portable Radios in a Fire Fighting Environment

Information & Communication Technology Cabling

Balloting on the first stage of development of the 2023 National Electrical Code is underway now and will be completed by March 26th.  We collaborate with several experts in the IEEE who are the leading voices in standards setting for ICT infrastructure present in education communities.  The issues are  many and complex and fast-moving.   We provide transcripts and a sample of the issues that will determine the substance of the 2023 Edition.

Code Making Panel No. 3 Public Input Report

A sample of concepts in play:

Temperature limitations of Class 2 and Class 3 Cables

Fire resistive cabling systems

Multi-voltage (single junction, entry, pathway or connection) signaling control relay equipment

Listing of audio/video power-limited circuits

Code Making Panel No. 16 Public Input Report

A sample of concepts in play:

Definition of “Communication Utility”

Mechanical execution of work

Listed/Unlisted cables entering buildings

Underground communication cabling coordination with the National Electrical Safety Code

Public comment on the First Draft of the 2026 revision will be received until August 24, 2024.  We collaborate with the IEEE Education & Healthcare Facilities Committee which hosts open colloquia 4 times monthly in European and American time zones.   See our CALENDAR for the next online meeting; open to everyone.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Art, Design & Fashion Studios

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton

 

 

NFPA 1 Second Draft Meeting (A2026) June 2 – 3, 2025

“Interior de Ateliê” 1898 Rafael Frederico

We are guided by four interdependent titles that set the standard of care for safety and sustainability of occupancies supporting the fine arts in education communities.

(1)  Chapter 43: Spraying, Dipping and Coating Using Flammable or Combustible Material of NFPA 1: Fire Code.   As a “code” the public has free access to the current 2021 Edition , and Chapter 43 at the link below:

NFPA 1 Fire Code / Chapter 43 Spraying, Dipping and Coating Using Flammable or Combustible Materials

You get a sense of the back-and-forth among the technical committee members from the transcripts of committee activity linked below:

First Revisions Report (282 pages)

Our interest lies in fire safety provisions for educational occupancies with activity involving paint, chemicals used with paint (art studios) and Class III combustible materials (garment design & prototyping).

(2) NFPA also has another title — NFPA 33 Standard for Spray Application Using Flammable or Combustible Materials — provides more detail for instructional and facility maintenance operations activity.

(3) NFPA 101 Life Safety Code, much of which is derived from NFPA 1 (See: “How the Fire Code and Life Safety Code Work Together“)

(4) Finally, the International Code Council develops a competitor title — 2021 International Fire Code — which also provides fire safety standards for art, design and fashion studio safety.  The IFC is developed in the Group A tranche of titles:

2021/2022 Code Development Group A

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage direct participation by education industry user-interests in the ICC and the NFPA code development process.  A user interest in education community would have a job title similar to the following: Principal, Dean, President, Chief of Business Operations, Facility Manager, Trade Shop Foreman.

Harvard University

We maintain all four titles identified in this post on the standing agenda of our Prometheus (fire safety) and Fine Arts colloquia.   See our CALENDAR for the next online meeting; open to everyone.

Issue: [10-31] [16-64]

Category: Fire Safety

Colleagues: Mike Anthony, Josh Evolve, Marcelo Hirschler


More

Northeastern University: Safety Guide for Art Studios

Princeton University: Art Safety

University of Chicago Art Studio Safety Policy

 

Emergency & Standby Power Systems

FREE ACCESS: 2025 Standard for Emergency and Standby Power Systems

Public Input for 2028 Revision Received Until June 4, 2025

Academy of Art University | San Francisco County

Elevators rely on electricity to function, and when there’s a power outage, the main source of power is disrupted. Modern elevators often have backup power systems, such as generators or battery packs, to lower the cab to the nearest floor and open the doors, but these systems may not work optimally, or be connected to all elevators or may not exist in older or less well-maintained buildings.

Today we start with getting the source of power right; leaving complicating factors such as alarms, reset and restart sequences.   NFPA 110 is the parent standard which references NFPA 70.

NFPA 110 FREE ACCESS

UpCodes Access

Ω


Public Input Report | 5 October 2022

Second Draft Meeting Minutes | 2 February 2023

Public Input No. 31-NFPA 110-2022 [ Section No. 3.2.4 ] | Page 7

National Electrical Code CMP-12


Bibliography

An Overview of NFPA 110

Type 10 Requirements for Emergency Power Systems

Bibliography: Microgrids

Standard for the Installation of Sprinkler Systems in Low-Rise Residential Occupancies

Free Access 2025 NFPA 13R |  ICC Group R crosswalk

About 20 percent of education settlement real assets lie in student and temporary faculty housing; some of it located in “off-campus fire protection grid” owned by Mom-and-Pop rental housing owners or large corporate student housing aggregators. Both eschew residential sprinkler systems unless mandated by local building codes.

2025 Public Input Transcript

2025 Public Comment Transcript

 Public input on the 2028 Edition will be received until June 4th.

Ivan Franko National University of Lviv

Related:

Center for Campus Fire Safety

Fire Protection Research Foundation: Stakeholder Perceptions of Home Fire Sprinklers

Hospital Plug Load

Today we examine relatively recent transactions in electrotechnologies — power, information and communication technology — that are present (and usually required) in patient care settings.   At a patient’s bedside in a hospital or healthcare setting, various electrical loads or devices may be present to provide medical care, monitoring, and comfort. Some of the common electrical loads found at a patient’s bedside include:

Hospital Bed: Electric hospital beds allow for adjustments in height, head position, and leg position to provide patient comfort and facilitate medical procedures.

Patient Monitor: These monitors display vital signs such as heart rate, blood pressure, oxygen saturation, and respiratory rate, helping healthcare professionals keep track of the patient’s condition.

Infusion Pumps: These devices administer medications, fluids, and nutrients intravenously at a controlled rate.

Ventilators: Mechanical ventilators provide respiratory support to patients who have difficulty breathing on their own.

Pulse Oximeter: This non-invasive device measures the oxygen saturation level in the patient’s blood.

Electrocardiogram (ECG/EKG) Machine: It records the electrical activity of the heart and is used to diagnose cardiac conditions.

Enteral Feeding Pump: Used to deliver liquid nutrition to patients who cannot take food by mouth.

Suction Machine: It assists in removing secretions from the patient’s airway.

IV Poles: To hold and support intravenous fluid bags and tubing.

Warming Devices: Devices like warming blankets or warm air blowers are used to maintain the patient’s body temperature during surgery or recovery.

Patient Call Button: A simple push-button that allows patients to call for assistance from the nursing staff.

Overbed Tables: A movable table that allows patients to eat, read, or use personal items comfortably.

Reading Lights: Bedside lights that allow patients to read or perform tasks without disturbing others.

Television and Entertainment Devices: To provide entertainment and alleviate boredom during the patient’s stay.

Charging Outlets: Electrical outlets to charge personal electronic devices like smartphones, tablets, and laptops.

It’s important to note that the specific devices and equipment present at a patient’s bedside may vary depending on the level of care required and the hospital’s equipment standards. Additionally, strict safety measures and electrical grounding are essential to ensure patient safety when using electrical devices in a healthcare setting.  

We have been tracking the back-and-forth on proposals, considerations, adoption and rejections in the 3-year revision cycles of the 2023 National Electrical Code and the2021 Healthcare Facilities Code.  We will use the documents linked below as a starting point for discussion; and possible action:

NFPA 99:

Electrical Systems (HEA-ELS) Public Input

Electrical Systems (HEA-ELS) Public Comment

NFPA 70:

National Electrical Code CMP-15

Fire Protection Research Foundation:

Electric Circuit Data Collection: An Analysis of Health Care Facilities (Mazetti Associates)

iDesign Services

Matt Dozier, Principal CMP-15

IEEE Education & Healthcare Facility Electrotechnology

There are many other organizations involved in this very large domain — about 20 percent of the US Gross Domestic Product.

Ahead of the September 7th deadline for new proposals for Article 517 for the 2026 National Electrical Code we will examine their influence in other sessions; specifically in our Health 100,200,300 and 400 colloquia.  See our CALENDAR for the next online meeting; open to everyone.

2026 National Electrical Code Workspace

Plug Load Management: Department of Energy By the National Renewable Energy Laboratory

Kitchen Wiring

“Le Coin de Cuisine” | 1883 Edwin Deakin

Education communities are stewards of hundreds of commercial-class kitchens in which the proximate risk of electrical energy must be managed — water spills and grease, fires, worn electrical cords on countertop equipment, faulty wiring or equipment, damaged outlets or connectors, and improperly used or damaged extension cords among them.   The safety and sustainability rules for this occupancy class is identified as Assembly Group A-2 in Section 303 of the International Building Code

We explore recent transcripts of expert committee activity in NEC Article 210 and provide links to video commentary.

Public comment on the Second Draft of the 2026 NEC will be received until April 18.  We typically coordinate our effort with the IEEE Education & Healthcare Facilities Committee.  The workspace set up for generating proposals can be found in the link below.

2026 National Electrical Code Workspace

2023 National Electrical Code (Free Access)

Other access portals:

UpCodes: 2020 NEC

Texas Electrical Code

California Electrical Code

Michigan Electrical Code: Part 8 Rules

Transcripts of the 2023 NEC are linked below:

Public Input Report (Part 1)

Public Input Report (Part 2)

Public Comment Report

We examine transcripts to track technical specifics that apply to student accommodation kitchens (on and off campus), university-affiliated hospital kitchens and sport arenas.

Relevant Research:

Smart Kitchen: Real Time Monitoring of Kitchen through IoT

Design of Chinese Smart Kitchen Based on Users’ Behavior

Intelligent kitchen management system based on gas safety

A Futuristic Kitchen Assistant – Powered by Artificial Intelligence and Robotics

A Multi-radar Architecture for Human Activity Recognition in Indoor Kitchen Environments

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content