Tag Archives: D1/1

Loading
loading..

Writing Headlines

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Coconut Cold Brew

 

 

 

Standards North Carolina

2023 Financial Report & Audit | $1.092B 

Master Plan: Vision 2030

The United States Food and Drug Administration and the National Coffee Association recommended standard temperature for safe hot coffee is around 160°F to 165°F (71°C to 74°C). This temperature range is considered hot enough to be enjoyable while minimizing the risk of scalding or burning.

These agencies do not have specific regulations or guidelines solely dedicated to cold brew coffee.  However, there are general principles and best practices for handling and storing perishable food products that can be applied to cold brew coffee to ensure safety.*

Cold brew coffee typically requires more time to prepare than traditional hot brew coffee. While hot brew coffee can be made in just a few minutes, cold brew coffee is made by steeping coffee grounds in cold water for an extended period of time, usually between 12 to 24 hours.

The longer steeping time allows the coffee to extract more slowly and results in a smoother, less acidic coffee concentrate. After steeping, the coffee grounds are usually filtered out and the resulting concentrate can be diluted with water, milk, or other liquids and served over ice.

While cold brew coffee does require more time to prepare, many coffee drinkers prefer its smoother, less bitter taste and lower acidity compared to hot brewed coffee. Additionally, the longer shelf life of cold brew coffee concentrate makes it a popular choice for those who like to prepare coffee in advance and have it ready to drink throughout the day.

https://youtu.be/p9_zQUVbwn0?si=JsBMJLZyq4S0aF7t two guys talkingme talking icon coffee

The Sacred Myths of Liberalism | Eric Kaufman (University of Buckingham)

Elon University Facilities Management

Coffee

We cover the technical standards applicable to small to medium sized coffee preparation installations in a cross-cutting way during our Kitchens 200 colloquium.

Relevant IEEE Research:

COVID-19 pandemic affected on coffee beverage decision and consumers’ behavior

Quality-Anomaly Identification in Liquid-Coffee Vending Machines Through Electrical Current Waveforms and Olfactory Data

Using Digital Marketing to Enhance Sustainability in The Coffee Business


* These recommendations are based on general food safety practices:

Water quality: Start with clean, potable water to brew your cold brew coffee. Make sure the water source is safe and free from contaminants.

Brewing process: Follow good manufacturing practices and ensure that your brewing equipment and utensils are clean and sanitized. Cold brew coffee is typically brewed using room temperature or cold water over an extended period. Ensure that the brewing container is properly sealed and protected from any potential sources of contamination.

Filtration: After the brewing process, filter the cold brew coffee to remove any sediment or particles. This can be done using a fine-mesh sieve or a dedicated filtration system.

Storage: Store the cold brew coffee in a clean, airtight container in the refrigerator. This helps to inhibit the growth of bacteria and maintain the quality of the coffee. Cold brew coffee can typically be stored for a few days to a couple of weeks, depending on the specific recipe and preparation method.

Temperature control: Keep the cold brew coffee refrigerated at a temperature below 41°F (5°C) to prevent the growth of harmful bacteria.

Serve safely: When serving cold brew coffee, use clean and sanitized utensils, containers, and dispensing equipment to avoid cross-contamination. If you add any additional ingredients like milk or sweeteners, ensure that they are stored properly and do not exceed their recommended storage times.

Cambridge Center for Smart Infrastructure & Construction

“No village or individual shall be compelled to make bridges at river banks,

except those who from of old are legally bound to do so.”

— Magna Cara Clause 23 (Limiting forced labor for infrastructure) 

“Clare Hall and King’s College Chapel, Cambridge, from the Banks of the River Cam” / Joseph Mallord William Turner (1793)

 

Smart Infrastructure: Getting More From Strategic Assets

Dr Jennifer Schooling, Director of CSIC

Dr Ajith Parlikad, CSIC Co-Investigator and Senior Lecturer

Mark Enzer, Global Water Sector Leader

Mott MacDonald; Keith Bowers, Principal Tunnel Engineer, London Underground

Ross Dentten, Asset Information and Configuration Manager, Crossrail

Matt Edwards, Asset Maintenance and Information Manager, Anglian Water Services

Jerry England, Group Digital Railway Director, Network Rail

Volker Buscher, Director, Arup Digital

 

Smart Infrastructure is a global opportunity worth £2trn-4.8trn. The world is experiencing a fourth industrial revolution due to the rapid development of technologies and digital abundance.

Smart Infrastructure involves applying this to economic infrastructure for the benefit of all stakeholders. It will allow owners and operators to get more out of what they already have, increasing capacity, efficiency and resilience and improving services.

It brings better performance at lower cost. Gaining more from existing assets is the key to enhancing service provision despite constrained finance and growing resource scarcity. It will often be more cost-effective to add to the overall value of mature infrastructure via digital enhancements than by physical enhancements – physical enhancements add `more of the same’, whereas digital enhancements can transform the existing as well.

Smart Infrastructure will shape a better future. Greater understanding of the performance of our infrastructure will allow new infrastructure to be designed and delivered more efficiently and to provide better whole-life value.

Data is the key – the ownership of it and the ability to understand and act on it. Industry, organisations and professionals need to be ready to adjust in order to take advantage of the emerging opportunities. Early adopters stand to gain the most benefit. Everyone in the infrastructure sector has a choice as to how fast they respond to the changes that Smart Infrastructure will bring. But everyone will be affected.

Change is inevitable. Progress is optional. Now is the time for the infrastructure industry to choose to be Smart.

 

LEARN MORE:

Cambridge Centre for Smart Infrastructure and Construction


Perspective: Since this paper is general in its recommendations, we provide examples of specific campus infrastructure data points that are difficult, if not impossible, to identify and “make smart” — either willfully, for lack of funding, for lack of consensus, for lack of understanding or leadership:

    1. Maintenance of the digital location of fire dampers in legacy buildings or even new buildings mapped with BIM.  Doors and ceiling plenums are continually being modified and the As-Built information is usually not accurate.  This leads to fire hazard and complicates air flow and assuring occupant temperature preferences (i.e. uncontrollable hot and cold spots) 
    2. Ampere readings of feeder breakers downstream from the electric service main.  The power chain between the service substation and the end-use equipment is a “no-man’s land” in research facilities that everyone wants to meter but few ever recover the cost of the additional metering.
    3. Optimal air flow rates in hospitals and commercial kitchens that satisfies both environmental air hazards and compartmentalized air pressure zones for fire safety.
    4. Identification of students, staff and faculty directly affiliated with the campus versus visitors to the campus.
    5. Standpipe pressure variations in municipal water systems
    6. Pinch points in municipal sewer systems in order to avoid building flooding.
    7. How much of university data center cost should be a shared (gateway) cost, and how much should be charged to individual academic and business units?
    8. Should “net-zero” energy buildings be charged for power generated at the university central heating and electric generation plant?
    9. How much staff parking should be allocated to academic faculty versus staff that supports the healthcare delivery enterprises; which in many cases provides more revenue to the university than the academic units?
    10. Finally, a classical conundrum in facility management spreadsheets: Can we distinguish between maintenance cost (which should be covered under an O&M budget) and capital improvement cost (which can be financed by investors)

 

 

Halifax Coffee Shops

Financial Statement: An apparent CA$40.193 shortfall  | National Building Code of Canada

Dal Student Life: Our Favorite Coffee Shops

Sam Harris: Take Back Control Of Your Mind


Halifax Nova Scotia c. 1762

Nova Scotia


Ivan’s Chili

Ben’s Nachos

Oulton-Stanish Centre

Hindbærsnitter & English Tea

Aarhus Universitet Financial Report 2023: 262 DKK million | Danmark

Aarhus University was founded in 1928 and is the second oldest university in Denmark.  It has a  total enrollment of approximately 39,000 students and employed around 9,000 faculty members and staff.  During the summer its doors are open to everyone on earth.

C.F. Møller Architects

Hygge


“At the Breakfast Table” | Laurits Andersen Ring

Tea Water & Simnel Cake

“The Strange Death of Europe” | Douglas Murray


Danmark

 

The “Perfect Pancake” & DYI Buttermilk

Newcastle University, founded in 1834 as the School of Medicine and Surgery, evolved into a university in 1963.  Its origins are intertwined with the advancement of medical education in Newcastle. Like many European universities its main “campus’ is integrated into the heart of the city.

Newcastle University | Estates and Facilities

Newcastle University | North East England

Sir Roger Scruton: Beauty, Conservatism & Tradition

DYI Buttermilk & The Perfect Pancake

Strawberries

Lovely Day

Recorded January 2015

Mathieu Manach : Percussions

Jean-Michel Warluzelle : Bass & background vocal

Bruno Thivend : Guitar & background vocal

Pierric Tailler : Vocal & guitar

Bill Withers Official Site


Université de Lyon | Fête des Lumières 2019 – Les Rêveries Lumineuses de Léonard

University of Coffee

“You invent a story, and then the story invents you.”
— Umberto Eco’s Foucault’s Pendulum

 

https://www.accuweather.com/en/it/trieste/213117/weather-forecast/213117?city=trieste

ACCU Weather

Università degli Studi di Trieste

Publication of the Bible jumpstarted literacy

Un mondo fatto bene


Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content