Tag Archives: D1/1

Loading
loading..

Cambridge Center for Smart Infrastructure & Construction

“Clare Hall and King’s College Chapel, Cambridge, from the Banks of the River Cam” / Joseph Mallord William Turner (1793)

 

Smart Infrastructure: Getting More From Strategic Assets

Dr Jennifer Schooling, Director of CSIC

Dr Ajith Parlikad, CSIC Co-Investigator and Senior Lecturer

Mark Enzer, Global Water Sector Leader

Mott MacDonald; Keith Bowers, Principal Tunnel Engineer, London Underground

Ross Dentten, Asset Information and Configuration Manager, Crossrail

Matt Edwards, Asset Maintenance and Information Manager, Anglian Water Services

Jerry England, Group Digital Railway Director, Network Rail

Volker Buscher, Director, Arup Digital

 

Smart Infrastructure is a global opportunity worth £2trn-4.8trn. The world is experiencing a fourth industrial revolution due to the rapid development of technologies and digital abundance.

Smart Infrastructure involves applying this to economic infrastructure for the benefit of all stakeholders. It will allow owners and operators to get more out of what they already have, increasing capacity, efficiency and resilience and improving services.

It brings better performance at lower cost. Gaining more from existing assets is the key to enhancing service provision despite constrained finance and growing resource scarcity. It will often be more cost-effective to add to the overall value of mature infrastructure via digital enhancements than by physical enhancements – physical enhancements add `more of the same’, whereas digital enhancements can transform the existing as well.

Smart Infrastructure will shape a better future. Greater understanding of the performance of our infrastructure will allow new infrastructure to be designed and delivered more efficiently and to provide better whole-life value.

Data is the key – the ownership of it and the ability to understand and act on it. Industry, organisations and professionals need to be ready to adjust in order to take advantage of the emerging opportunities. Early adopters stand to gain the most benefit. Everyone in the infrastructure sector has a choice as to how fast they respond to the changes that Smart Infrastructure will bring. But everyone will be affected.

Change is inevitable. Progress is optional. Now is the time for the infrastructure industry to choose to be Smart.

 

LEARN MORE:

Cambridge Centre for Smart Infrastructure and Construction


Perspective: Since this paper is general in its recommendations, we provide examples of specific campus infrastructure data points that are difficult, if not impossible, to identify and “make smart” — either willfully, for lack of funding, for lack of consensus, for lack of understanding or leadership:

    1. Maintenance of the digital location of fire dampers in legacy buildings or even new buildings mapped with BIM.  Doors and ceiling plenums are continually being modified and the As-Built information is usually not accurate.  This leads to fire hazard and complicates air flow and assuring occupant temperature preferences (i.e. uncontrollable hot and cold spots) 
    2. Ampere readings of feeder breakers downstream from the electric service main.  The power chain between the service substation and the end-use equipment is a “no-man’s land” in research facilities that everyone wants to meter but few ever recover the cost of the additional metering.
    3. Optimal air flow rates in hospitals and commercial kitchens that satisfies both environmental air hazards and compartmentalized air pressure zones for fire safety.
    4. Identification of students, staff and faculty directly affiliated with the campus versus visitors to the campus.
    5. Standpipe pressure variations in municipal water systems
    6. Pinch points in municipal sewer systems in order to avoid building flooding.
    7. How much of university data center cost should be a shared (gateway) cost, and how much should be charged to individual academic and business units?
    8. Should “net-zero” energy buildings be charged for power generated at the university central heating and electric generation plant?
    9. How much staff parking should be allocated to academic faculty versus staff that supports the healthcare delivery enterprises; which in many cases provides more revenue to the university than the academic units?
    10. Finally, a classical conundrum in facility management spreadsheets: Can we distinguish between maintenance cost (which should be covered under an O&M budget) and capital improvement cost (which can be financed by investors)

 

 

Downtown Coffee Shop Tour

 

 

 

 

 

 

 

 

 

 

 

The Electric City

Facilities Management

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delaware vs. Pennsylvania

Standards Pennsylvania

Coconut Cold Brew

Standards North Carolina

2023 Financial Report & Audit | $1.092B 

The United States Food and Drug Administration and the National Coffee Association recommended standard temperature for safe hot coffee is around 160°F to 165°F (71°C to 74°C). This temperature range is considered hot enough to be enjoyable while minimizing the risk of scalding or burning.

These agencies do not have specific regulations or guidelines solely dedicated to cold brew coffee.  However, there are general principles and best practices for handling and storing perishable food products that can be applied to cold brew coffee to ensure safety.*

Cold brew coffee typically requires more time to prepare than traditional hot brew coffee. While hot brew coffee can be made in just a few minutes, cold brew coffee is made by steeping coffee grounds in cold water for an extended period of time, usually between 12 to 24 hours.

The longer steeping time allows the coffee to extract more slowly and results in a smoother, less acidic coffee concentrate. After steeping, the coffee grounds are usually filtered out and the resulting concentrate can be diluted with water, milk, or other liquids and served over ice.

While cold brew coffee does require more time to prepare, many coffee drinkers prefer its smoother, less bitter taste and lower acidity compared to hot brewed coffee. Additionally, the longer shelf life of cold brew coffee concentrate makes it a popular choice for those who like to prepare coffee in advance and have it ready to drink throughout the day.

https://youtu.be/p9_zQUVbwn0?si=JsBMJLZyq4S0aF7t two guys talkingme talking icon coffee

Triggernometry

The Sacred Myths of Liberalism | Eric Kaufman (University of Buckingham)

Elon University Facilities Management

Coffee

We cover the technical standards applicable to small to medium sized coffee preparation installations in a cross-cutting way during our Kitchens 200 colloquium.

Relevant IEEE Research:

COVID-19 pandemic affected on coffee beverage decision and consumers’ behavior

Quality-Anomaly Identification in Liquid-Coffee Vending Machines Through Electrical Current Waveforms and Olfactory Data

Using Digital Marketing to Enhance Sustainability in The Coffee Business


* These recommendations are based on general food safety practices:

Water quality: Start with clean, potable water to brew your cold brew coffee. Make sure the water source is safe and free from contaminants.

Brewing process: Follow good manufacturing practices and ensure that your brewing equipment and utensils are clean and sanitized. Cold brew coffee is typically brewed using room temperature or cold water over an extended period. Ensure that the brewing container is properly sealed and protected from any potential sources of contamination.

Filtration: After the brewing process, filter the cold brew coffee to remove any sediment or particles. This can be done using a fine-mesh sieve or a dedicated filtration system.

Storage: Store the cold brew coffee in a clean, airtight container in the refrigerator. This helps to inhibit the growth of bacteria and maintain the quality of the coffee. Cold brew coffee can typically be stored for a few days to a couple of weeks, depending on the specific recipe and preparation method.

Temperature control: Keep the cold brew coffee refrigerated at a temperature below 41°F (5°C) to prevent the growth of harmful bacteria.

Serve safely: When serving cold brew coffee, use clean and sanitized utensils, containers, and dispensing equipment to avoid cross-contamination. If you add any additional ingredients like milk or sweeteners, ensure that they are stored properly and do not exceed their recommended storage times.

Medical Practice Electrical equipment

“The Agnew Clinic” | Thomas Eakins (1889)

 

International Electrotechnical Commission Technical Committee TC 62 prepares international standards and other publications concerning electrical equipment, electrical systems and software used in healthcare and their effects on patients, operators, other persons and the environment.  As such the work of this parent committee — which has broad implications for comparatively cash-rich multi-national medical equipment manufacturers — coordinates the work of several subcommittees; listed below:

62A Common aspects of medical equipment, software and systems

62B Medical imaging equipment, software and systems

62C Equipment for radiotherapy, nuclear medicine and radiation dosimetry

62D Particular medical equipment, software and systems

Germany is Global the Secretariat.  The Business Plan is linked below:

IEC TC 62 Strategic Business Plan 2021 February

The U.S National Committee of the International Electrotechnical Commission serves as the focal point for U.S parties who are interested in the development, promulgation, and use of globally relevant standards for the electrotechnical industry. The USNC is also engaged in the assessment of conformance to standards, undertaking work in areas such as testing, certification, and accreditation.  Tony Zertuche is ANSI’s point person ([email protected]) and we encourage you to communicate directly with Tony for the most up-to-date information.

We coordinate our response to the development of IEC titles in this domain with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  When there are Committee Draft for Votes released for public consultation (CDV) we coordinate our responses with experts active in IEEE globally.

Since the scope of this committee’s work involves products (in the main) we rank it in the middle of our priority tier.  Our primary interest lies with interoperability standards, all the while recognizing that there is very little difference in the way education communities respond to IEC standard proposals than the way all other stakeholders would respond.  At the risk of understatement medical research and clinical healthcare delivery are a large part of the revenue of many university systems so that is why we track these titles and others.

"The trained nurse has become one of the great blessings of humanity, taking a place beside the physician and the priest" - William Osler"While we try to teach our children all about life, our children teach us what life is all about" - Angela Schwindt "The true art of pediatrics lies not only in curing diseases but also in preventing them" - Abraham JacobiGermany

We maintain work flow of this committee on our Health, Electrical and Nursing colloquia.  See our CALENDAR for the next online meeting; open to everyone.

International Electrotechnical Commission | CDV Consultations


23 November 2021

 

Earlier this year one of the subcommittees of International Electrotechnical Commission Technical Committee 62 (IEC TC/62) released a redline (candidate revision) for public consultation:

IEC 63120 ED1: Refurbishment of medical electrical equipment, medical electrical systems and sub-assemblies and reuse of components as part of the extended life-cycle.   

We found similar concepts running through the literature among United States consensus product developers; notably the IEEE, NFPA and NEMA.  Re-use, reconditioning, recycling of electrical equipment is a priority that can contribute to the safety and sustainability agenda of healthcare enterprises in education communities so we follow it; vigilant for excessive market-making by incumbent verticals.

The comment period lapsed on March 27th but we will likely see more action in the technical committees receiving proposals from vertical incumbents making markets in medical equipment replacement parts.   We track development of this and other IEC titles on our provisional workspace*:

Collaborative Workspace for IEC Consensus Products

University affiliated medical research and healthcare delivery enterprises are large stakeholders in this domain so we keep pace by collaborating with other experts affiliated with the IEEE Education & Healthcare Facilities Committee (E&H) and the IEEE Engineering in Medicine & Biology Society.

We encourage our colleagues working in university-affiliated healthcare enterprises to interact directly with the IEC by setting up a Commenting Account to access the redline linked below:

Common aspects of electrical equipment used in medical practice equipment

It is our custom to follow the lead of the the US National Committee to the International Electrotechnical Commission (USNA/IEC) primarily, though we have significant professional relationships with academic scholars in other nations through the IEEE Standards Association and the E&H Committee.  We are happy to discuss any consensus product, any day at 11 AM Eastern time, however the expertise for responding to invitations for public comment like this is usually present during the E&H Committee meetings which take place four times monthly in European and American time zones.

Issue: [11-66]

Category: Electrical, Healthcare Facilities, International

Colleagues: Mike Anthony, Jim Harvey, Giuseppe Parise, Luigi Parise, Massimo Mitolo

*This is a carry-over workspace from the original University of Michigan facility standards enterprise — @StandardsUMich — and has been re-purposed for educational use and collaboration with the IEEE E&H Committee and the IEEE Engineering in Medical and Biology Society


LEARN MORE:

 

Coffee or Tea?

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Amerikanische Mädchen probieren Döner!!

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Morning Shower

Complete Monograph: 2024 GROUP A PROPOSED CHANGES TO THE I-CODES

“The Bathing Pool” | Hubert Robert (1733–1808)

CLICK IMAGE to access complete text

 

Design Considerations for Hot Water Plumbing

Baseline Standards for Student Housing

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Indoor plumbing has a long history, but it became widely available in the 19th and early 20th centuries. In the United States, for example, the first indoor plumbing system was installed in the Governor’s Palace in Williamsburg, Virginia in the early 18th century. However, it was not until the mid-19th century that indoor plumbing became more common in middle-class homes.

One important milestone was the development of cast iron pipes in the 19th century, which made it easier to transport water and waste throughout a building. The introduction of the flush toilet in the mid-19th century also played a significant role in making indoor plumbing more practical and sanitary.

By the early 20th century, indoor plumbing had become a standard feature in most middle-class homes in the United States and other developed countries. However, it was still not widely available in rural areas and poorer urban neighborhoods until much later.

International Plumbing Code

Form v. Function | Function v. Form

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content