Tag Archives: D2

Loading
loading..

Critical Operations Power Systems


The original University of Michigan codes and standards enterprise advocated actively in Article 708 Critical Operations Power Systems (COPS) of the National Electrical Code (NEC) because of the elevated likelihood that the education facility industry managed assets that were likely candidates for designation critical operations areas by emergency management authorities.

Because the NEC is incorporated by reference into most state and local electrical safety laws, it saw the possibility that some colleges and universities — particularly large research universities with independent power plants, telecommunications systems and large hospitals  — would be on the receiving end of an unfunded mandate.   Many education facilities are identified by the Federal Emergency Management Association as community storm shelters, for example.

As managers of publicly owned assets, University of Michigan Plant Operations had no objection to rising to the challenge of using publicly owned education facilities for emergency preparedness and disaster recovery operations; only that meeting the power system reliability requirements to the emergency management command centers would likely cost more than anyone imagined — especially at the University Hospital and the Public Safety Department facilities.  Budgets would have to be prepared to make critical operations power systems (COPS) resistant to fire and flood damages; for example.

Collaboration with the Institute of Electrical and Electronic Engineers Industrial Applications Society began shortly after the release of the 2007 NEC.  Engineering studies were undertaken, papers were published (see links below) and the inspiration for the IEEE Education & Healthcare Facilities Committee developed to provide a gathering place for power, telecommunication and energy professionals to discover and promulgate leading practice.   That committee is now formally a part of IEEE and collaborates with IAS/PES JTCC assigned the task of harmonizing NFPA and IEEE electrical safety and sustainability consensus documents (codes, standards, guidelines and recommended practices.

The transcript of NEC Code Making Panel 13 — the committee that revises COPS Article 708 every three years — is linked below:

NEC CMP-13 First Draft Balloting

NEC CMP-13 Second Draft Balloting

The 2023 Edition of the National Electrical Code does not contain revisions that affect #TotalCostofOwnership — only refinement of wiring installation practices when COPS are built integral to an existing building that will likely raise cost.  There are several dissenting comments to this effect and they all dissent because of cost.   Familiar battles over overcurrent coordination persist.

Our papers and proposals regarding Article 708 track a concern for power system reliability — and the lack of power  — as an inherent safety hazard.   These proposals are routinely rejected by incumbent stakeholders on NEC technical panels who do not agree that lack of power is a safety hazard.  Even if lack of power is not a safety hazard, reliability requirements do not belong in an electrical wiring installation code developed largely by electricians and fire safety inspectors.  The IEEE Education & Healthcare Facilities Committee (IEEE E&H) maintains a database on campus power outages; similar to the database used by the IEEE 1366 committees that develop reliability indices to enlighten public utility reliability regulations.

Public input on the 2026 revision to the NEC will be received until September 7th.  We have reserved a workspace for our priorities in the link below:

2026 National Electrical Code Workspace

Colleagues: Robert Arno, Neal Dowling, Jim Harvey

 

LEARN MORE:

IEEE | Critical Operations Power Systems: Improving Risk Assessment in Emergency Facilities with Reliability Engineering

Consuting-Specifying Engineer | Risk Assessments for Critical Operations Power Systems

Electrical Construction & Maintenance | Critical Operations Power Systems

International City County Management Association | Critical Operations Power Systems: Success of the Imagination

Facilities Manager | Critical Operations Power Systems: The Generator in Your Backyard

Qualification Standard for Power Plant Operators

EPRI is an independent, nonprofit organization that is primarily funded by its member utilities. These member utilities are typically electric power companies, and they contribute financially to EPRI to support its research and development activities.

While EPRI is not directly funded by the government, it does collaborate with various government agencies on research projects and receives funding for specific initiatives through government grants and contracts. Additionally, some of EPRI’s research and development efforts align with government priorities in areas such as renewable energy, environmental sustainability, and grid modernization.

Qualification Standard for Power Plant Operators

EPRI 2024 Research Portfolio: Building on Success to Drive Progress

Electrical inspectors (See NFPA 1078) typically do not have jurisdiction over electrical power plants. Electrical power plants, especially large-scale utility power plants, are subject to much more stringent regulations and oversight than regular electrical installations. The responsibility for inspecting and ensuring the safety and compliance of power plants falls under various government agencies and organizations.

In the United States, for example, power plants are subject to federal regulations set forth by the U.S. Nuclear Regulatory Commission (NRC) for nuclear power plants or the U.S. Environmental Protection Agency (EPA) for fossil fuel power plants. Additionally, state regulatory agencies and utility commissions may have their own specific requirements and oversight for power plants within their jurisdictions.

Power plants typically undergo rigorous inspections and audits to ensure compliance with safety, environmental, and operational standards. These inspections are conducted by specialized teams of engineers, experts, and representatives from relevant regulatory bodies and utilities.

While electrical inspectors may not have jurisdiction over power plants, they play a crucial role in inspecting and ensuring the safety of electrical installations in other settings, such as smaller power generation facilities (i.e. district energy plants) that are not exempted by self-assessment charters granted to many large university power plants.

Gallery: School, College & University Electric Systems

 

Water and Electricity

Supporting swimming pools with electricity involves various essential functions such as filtration, heating, lighting, and sanitation. Ensuring safety and energy efficiency is crucial, and pool owners can take steps to minimize electricity costs and environmental impact. Key points:

Filtration and Circulation: Swimming pools rely on electric pumps to circulate water through filters, removing debris and maintaining water quality.

Heating: Electric heaters or heat pumps are used to regulate water temperature for comfort, especially in colder seasons.

Lighting: Underwater and pool area lighting enhance safety and aesthetics, typically powered by electricity.

Chlorination and Sanitation: Electric chlorinators or ozone generators help maintain water cleanliness and hygiene.

Automation: Electric control systems enable pool owners to manage filtration, heating, and lighting remotely for convenience and energy efficiency.

Energy Efficiency: Pool owners can invest in energy-efficient equipment, like variable-speed pumps and LED lighting, to reduce electricity consumption and operating costs.

Operations and Maintenance: Regular electrical maintenance ensures safe and reliable pool operation, preventing electrical faults and hazards.  The electricity cost for pool operation can be significant, so pool owners should consider energy-efficient practices and equipment to reduce expenses.

https://standardsmichigan.com/australia/

Education communities present one of the largest installed bases of artificially created bodies of water; the most abundance resource on earth.  These bodies vary in size, purpose, and design but are all created by human intervention to serve specific needs, whether practical, recreational, or aesthetic.  Safe and sustainable management of them in the Unite States are informed by best practice found in Article 680 of the National Electrical Code with scope statement below:

Construction and installation of electrical wiring for, and equipment in or adjacent to, all swimming, wading, therapeutic, and decorative pools; fountains; hot tubs; spas; and hydromassage bathtubs, whether permanently installed or storable, and to metallic auxiliary equipment, such as pumps, filters, and similar equipment.

Consultation on the First Draft of the 2026 revision closes August 24, 2024.

2026 National Electrical Code Workspace

Related:

Pool, Fountain, Agriculture & Water Infrastructure Electrical Safety

https://www.si.com/extra-mustard/2016/08/15/michael-phelps-poses-bottom-university-michigan-pool-2005

Marina & Boatyard Electrical Safety

“Backup” Power Systems

Image Credit: Unknown

We use the term “backup” power system to convey the complexity of electrical power sources when the primary source is not used; either as a scheduled or an unscheduled event.   Best practice literature in this domain has been relatively stable, even though challenged by newer primary source of power technologies.   We are running our daily colloquium in parallel with the recurring 4 times monthly meetings of the IEEE Education & Healthcare Facilities Committee.   You are welcomed to join us with the login credentials at the upper right of our home page.

2026 National Electrical Code Workspace

2028 National Electrical Safety Code

Electrical Resource Adequacy

NESC & NEC Cross-Code Correlation

 

 

Flicker Characterization of Energy Saving Lamps

 

Photometric Flicker Characterization Study on Energy Saving Lamps Under Wide Variation Voltage AC Network

 

Rizally Priatmadja

PT PLN (Persero), Jl. Trunojoyo Blok M I/135 Kebayoran Baru, Jakarta, Indonesia

Pascal Dupuis

Kawantech S.A.S, 6 Rue Françoise d’Eaubonne, Toulouse, France

Ngapuli I. Sinisuka

School of Electrical Engineering and Informatics, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, Indonesia

Georges Zissis

Université de Toulouse, Laplace, UMR 5213 (CNRS, INPT, UPS), 118 rte de Narbonne, Toulouse, France

 

Abstract:  With the advent of Solid State Lighting came a renewed interest in the study of flicker. Potential effects include brightness enhancement, but also discomfort, ocular fatigue, phantom and stroboscopic effects. Both IEEE and IEC developed new metrics, but at the time of writing no firm consensus has been reached. Yet previous lamp studies in the Laplace laboratory showed that various flicker phenomenon are present on different lamps, but this feature is not documented. This paper focus on flicker changes w.r.t. applied voltage. The Indonesian power grid network is indeed characterized by large voltage variations; our purpose is to detect which lamps may exhibit too elevated flicker levels during out of nominal excursion and map such behavior with other electrical characteristics.

CLICK HERE to order complete paper

More

International Standardization Organization Technical Committee 274 Light and Lighting | Strategic Business Plan

Harmonic Impacts on the Electrical Distribution Network by the Broad Usage of LED Lamps

LED lighting — Reduce the power consumption and increase the users comfort

Variation of discharge parameters versus cold spot temperature in a 50 Hz AC operated fluorescent lamp

Solar

Sie strahlt vor Freude über ihre Auszeichnung – TH-Alumna Melanie Klaus. Für ihre Bachelorarbeit im Bereich Erneuerbare Energien wurde sie vom Solarenergieförderverein Bayern geehrt. In ihrer Bachelorarbeit im Studiengang Elektro- und Informationstechnik untersuchte sie das Zusammenspiel von Wind- und Solarenergie und den Nutzen, der sich hieraus für die regenerative Energieerzeugung erzielen lässt. Untersucht wurde also die Nutzung der natürlichen Kombination von Wind und Sonne für die Energieerzeugung. Um die Rentabilität dieser Einspeisekombination zu ermitteln, hat Melanie Klaus ein Software-Tool entwickelt, welches zur Planung und Simulation abgestimmter Photovoltaik-Wind-Kombinationen dient und bereits für die Errichtung einer Photovoltaik-Anlage zu einem Windpark eingesetzt wird.

Starting 2023 we break away the topic of solar energy standards from our standing Electrical and Energy colloquia.   We start with the following titles

IEC TC 82 Solar photovoltaic energy systems

Underwriters Laboratories 1703 PV Module Certification

ASTM E772 Standard Terminology of Solar Energy Conversion

IEEE 1562 Guide for Array and Battery Sizing in Stand-Alone Photovoltaic Systems

NEMA Solar Photovoltaic Council

NECA 412 Standard for Installing and Maintaining Photovoltaic Power Systems

NFPA 70 Articles 690-691

NFPA 70 Articles 705 & 855

International Code Council Section 1607 Photovoltaic panels or modules

ASHRAE International: 90.1 Building Energy Code & 189.1 Green Energy Code

Time permitting: Example design specification and construction contract.

"Education is simply the soul of a society as it passes from one generation to another" - G.K. Chesterton

Other standards developers and publishers are also present in this domain but this list is where we will start given that we only have an hour.   Join us today at 16:00 with the login credentials at the upper right of our home page.

Readings:

What are the hidden costs of solar panels?

Do We Have Enough Silver, Copper, And Other Materials To Keep Up With The Growth Of Solar?

Mining Raw Materials for Solar Panels: Problems and Solutions

Grid-Connected Microgrid Battery Energy Storage Systems

Solarvoltaic PV Systems

“Icarus” Joos de Momper

National Electrical Code Articles 690 and 691 provide electrical installation requirements for Owner solarvoltaic PV systems that fall under local electrical safety regulations.  Access to the 2023 Edition is linked below;

2023 National Electrical Code

Insight into the technical problems managed in the 2023 edition can be seen in the developmental transcripts linked below:

Panel 4  Public Input Report (869 pages)

Panel 4  Second Draft Comment Report (199 pages)

The IEEE Joint IAS/PES (Industrial Applications Society & Power and Energy Society) has one vote on this 21-member committee; the only pure “User-Interest” we describe in our ABOUT.  All other voting representatives on this committee represent market incumbents or are proxies for market incumbents; also described in our ABOUT.

The 2026 National Electrical Code has entered its revision cycle.  Public input is due September 7th.

We maintain these articles, and all other articles related to “renewable” energy, on the standing agenda of our Power and Solar colloquia which anyone may join with the login credentials at the upper right of our home page.   We work close coupled with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones; also open to everyone.

 

 

 

 

A Survey on Explainable Artificial Intelligence

Decoding the US Senate Hearing on Oversight of AI: NLP Analysis in Python

 

Peeking Inside the Black-Box_ A Survey on Explainable Artificial Intelligence (XAI)

IEEE Explore

Amina Adadi & Mohammed Berrada

Ben Abdellah University Morocco

 

ABSTRACT: At the dawn of the fourth industrial revolution, we are witnessing a fast and widespread adoption of artificial intelligence (AI) in our daily life, which contributes to accelerating the shift towards a more algorithmic society. However, even with such unprecedented advancements, a key impediment to the use of AI-based systems is that they often lack transparency. Indeed, the black-box nature of these systems allows powerful predictions, but it cannot be directly explained. This issue has triggered a new debate on explainable AI (XAI). A research field holds substantial promise for improving trust and transparency of AI-based systems. It is recognized as the sine qua non for AI to continue making steady progress without disruption. This survey provides an entry point for interested researchers and practitioners to learn key aspects of the young and rapidly growing body of research related to XAI. Through the lens of the literature, we review the existing approaches regarding the topic, discuss trends surrounding its sphere, and present major research trajectories.

Sample of video coverage sorted by view count:

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content