Tag Archives: D2

Loading
loading..

Information & Communication Technology Cabling

Balloting on the first stage of development of the 2023 National Electrical Code is underway now and will be completed by March 26th.  We collaborate with several experts in the IEEE who are the leading voices in standards setting for ICT infrastructure present in education communities.  The issues are  many and complex and fast-moving.   We provide transcripts and a sample of the issues that will determine the substance of the 2023 Edition.

Code Making Panel No. 3 Public Input Report

A sample of concepts in play:

Temperature limitations of Class 2 and Class 3 Cables

Fire resistive cabling systems

Multi-voltage (single junction, entry, pathway or connection) signaling control relay equipment

Listing of audio/video power-limited circuits

Code Making Panel No. 16 Public Input Report

A sample of concepts in play:

Definition of “Communication Utility”

Mechanical execution of work

Listed/Unlisted cables entering buildings

Underground communication cabling coordination with the National Electrical Safety Code

Public comment on the First Draft of the 2026 revision will be received until August 24, 2024.  We collaborate with the IEEE Education & Healthcare Facilities Committee which hosts open colloquia 4 times monthly in European and American time zones.   See our CALENDAR for the next online meeting; open to everyone.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Energy Standard for *Sites* and Buildings

Addendum av to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings. This addendum creates more exacting provisions for envelope alterations. The new format is intended to better communicate the requirements, triggers, and allowances associated with performing an envelope alteration to promote energy efficiency within the impacted area(s).  Consultation closes October 6.

ANSI Standards Action Weekly Edition | Given ASHRAE’s revision redlines are frequently uploaded here

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

Education estate managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World


* Many standards-developing organizations aim to broaden their influence by entering the product standard and certification domain. Although our primary focus is on interoperability standards (within a system of interoperable products), we also consider market dynamics when product performance specifications are incorporated by reference into public law.

Interconnected Electric Power Production Sources “Microgrids”

“Landscape with a Farm House and Windmill” (1680) / Jacob Isaaksz van Ruisdael

We have always taken a forward-looking approach to the National Electrical Code (NEC) because there is sufficient supply of NEC instructors and inspectors and not enough subject matter experts driving user-interest ideas into it.  Today we approach the parts of the 2023 NEC that cover wiring safety for microgrid systems; a relatively new term of art that appropriates safety and sustainability concepts that have existed in electrotechnology energy systems for decades.

Turn to Part II of Article 705 Interconnected Electric Power Production Sources:

Free Access 2023 National Electrical Code

You will notice that microgrid wiring safety is a relatively small part of the much larger Article 705 Content.   There were relatively minor changes to the 2017 NEC in Section 705.50  — but a great deal of new content regarding Microgrid Interconnection Devices, load side connections, backfeeding practice and disconnecting means — as can be seen in the transcripts of Code-Making Panel 4 action last cycle:

Code‐Making Panel 4 Public Input Report (692 Pages)

Code-Making Panel 4 Public Comment Report (352 Pages)

Keep in mind that the NEC says nothing (or nearly very little, in its purpose stated in Section 90.2) about microgrid economics or the life cycle cost of any other electrical installation.  It is the claim about economic advantages of microgrids that drive education facility asset management and energy conservation units to conceive, finance, install, operate and — most of all — tell the world about them.

In previous posts we have done our level best to reduce the expectations of business and finance leaders of dramatic net energy savings with microgrids — especially on campuses with district energy systems.  Microgrids do, however, provide a power security advantage during major regional contingencies — but that advantage involves a different set of numbers.

Note also that there is no user-interest from the education facility industry — the largest non-residential building construction market in the the United States — on Panel 4.   This is not the fault of the NFPA, as we explain in our ABOUT.

The 2023 NEC was released late last year.

 

The 2026 revision cycle is in full swing with public comment on the First Draft receivable until August 24, 2024.  Let’s start formulating our ideas using the 2023 CMP-4 transcripts.   The link below contains a record of work on the 2023 NEC:

2026 National Electrical Code Workspace

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with other IEEE professional societies.

Mike Anthony’s father-in-law and son maintaining the electrical interactive system installed in the windmill that provides electricity to drive a pump that keeps the canal water at an appropriate level on the family farm near Leeuwarden, The Netherlands.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer

Archive / Microgrids


 

“Backup” Power Systems

Image Credit: Unknown

We use the term “backup” power system to convey the complexity of electrical power sources when the primary source is not used; either as a scheduled or an unscheduled event.   Best practice literature in this domain has been relatively stable, even though challenged by newer primary source of power technologies.   We are running our daily colloquium in parallel with the recurring 4 times monthly meetings of the IEEE Education & Healthcare Facilities Committee.   You are welcomed to join us with the login credentials at the upper right of our home page.

Emergency & Standby Power Systems

2026 National Electrical Code Workspace

IEC 60947-6-1 Low-voltage switchgear and controlgear – Part 6-1: Multiple function equipment – Transfer switching equipment

 

2028 National Electrical Safety Code

Electrical Resource Adequacy

NESC & NEC Cross-Code Correlation

 

Baseball Lighting

Baseball is a pastoral game and lighting changed the experience of it. Since a baseball is less than 3-inches in diameter and routinely travels 400 feet at 100 miles per hour, illumination design must have outfielders in mind as well as other players and spectators.


 

“Baseball at Night” | Morris Kantor (1934)

 

 

 

“Baseball is ninety percent mental

and the other half is physical.”

– Yogi Berra

 

After athletic facility life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

 

During the spring baseball season the document linked below provides guidance for illumination designers, contractors and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We cover the objectives of the energy conservation advocates in separate posts; notably advocates using the International Code Council and the ASHRAE suite to advance their agenda to press boxes and the entire baseball experience (interior and exterior) site in separate posts.

We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next Sport colloquium  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Energy Conservation, Energy,  Athletics & Recreation

Colleagues: Mike Anthony, Jim Harvey, Jose Meijer, Scott Gibbs, George Reiher


More

Comparison of MH and LED performance for sport lighting application

A novel smart energy management system in sports stadiums

Tracking pitches for broadcast television

Stadium Lights

Outdoor Lighting Design Guide

Sport Lighting

 

 

Emergency & Standby Power Systems

FREE ACCESS: 2025 Standard for Emergency and Standby Power Systems

Public Input for 2028 Revision Received Until June 4, 2025

Academy of Art University | San Francisco County

Elevators rely on electricity to function, and when there’s a power outage, the main source of power is disrupted. Modern elevators often have backup power systems, such as generators or battery packs, to lower the cab to the nearest floor and open the doors, but these systems may not work optimally, or be connected to all elevators or may not exist in older or less well-maintained buildings.

Today we start with getting the source of power right; leaving complicating factors such as alarms, reset and restart sequences.   NFPA 110 is the parent standard which references NFPA 70.

NFPA 110 FREE ACCESS

UpCodes Access

Ω


Public Input Report | 5 October 2022

Second Draft Meeting Minutes | 2 February 2023

Public Input No. 31-NFPA 110-2022 [ Section No. 3.2.4 ] | Page 7

National Electrical Code CMP-12


Bibliography

An Overview of NFPA 110

Type 10 Requirements for Emergency Power Systems

Bibliography: Microgrids

Canadian Electrical Code

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content