Tag Archives: D2

Loading
loading..

Illumination 300

IEEE Education & Healthcare Facilities Committee

Outdoor Sport Illumination Technical Issues & Representative Calculation

“Starry Night Over the Rhône” 1888 Vincent van Gogh

Today we refresh our understanding of the moment in illumination technologies for outdoor lighting systems— related but different from our exploration of building interior illumination systems in Illumination 200.  Later in 2023 we will roll out Illumination 500 which explores litigation related to public illumination technology.  As cities-within-cities the shared perimeter of a campus with the host municipality has proven rich in legal controversy and action.

Illumination technology was the original inspiration for the electric utility industry; providing night-time security and transforming every sector of every economy on earth.  Lighting load remains the largest component of any building’s electric load — about 35 percent– making it a large target for energy regulations.

Our inquiry begins with selections from the following documents…

International Electrotechnical Commission TC 34 Lighting

IEC 60364 Electrical Installations in Buildings

2023 National Electrical Safety Code

IEEE P3001.9 – Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities

Institution of Engineering and Technology: Recommendations for Energy-efficient Exterior Lighting Systems

2023 National Electrical Code: Article 410  (While the bulk of the NEC concerns indoor wiring fire hazards, there are passages that inform outdoor lighting wiring safety)

2019 ASHRAE 90.1: Chapter 9 Lighting

Illumination Engineering Society: Various titles

ISO/TC 274 Light and lighting

Salt Water River Project: Outdoor Lighting Standards

US DOE-EERE Building Energy Codes Program

…and about 20 other accredited, consortia or ad hoc standards developers and publishers aligned principally with vertical incumbents.  Illumination was the original inspiration (i.e. the first “killer app”) for the electrical power industry in every nation.  Its best practice literature reflects a fast-moving, shape-changing domain.

Click in today with the login credentials at the upper right of our home page.

Upper Wharfedale Primary Federation School District Yorkshire Dales

McGill University: Before electricity, streets were filled with gas lights

Outdoor lighting systems can be owned and maintained by different entities depending on the context and location. Here are some examples of ownership regimes for outdoor lighting systems:

  1. Public ownership: In this case, outdoor lighting systems are owned and maintained by the local government or municipal authority. The lighting may be installed in public spaces such as parks, streets, and other outdoor areas for the safety and convenience of the public.
  2. Private ownership: Outdoor lighting systems may be owned by private individuals or organizations. For example, a business owner may install outdoor lighting for security or aesthetic reasons, or a homeowner may install outdoor lighting in their garden or yard.
  3. Co-owned: Outdoor lighting systems may be owned jointly by multiple entities. For example, a residential community may jointly own and maintain outdoor lighting in their shared spaces such as parking areas, community parks, or recreational facilities.
  4. Utility ownership: Outdoor lighting systems may be owned and maintained by utility companies such as electric or energy companies. These companies may install and maintain street lights or other lighting systems for the public good.
  5. Third-party ownership: In some cases, a third-party entity may own and maintain outdoor lighting systems on behalf of a public or private entity. For example, a lighting contractor may install and maintain lighting in a public park on behalf of a local government.

The ownership regime of an outdoor lighting system can have implications for issues such as installation, maintenance, and cost-sharing. It is important to consider ownership when designing and implementing outdoor lighting systems to ensure their long-term effectiveness and sustainability.

More

International Commission on Illumination

National Electrical Manufacturers Association

National Electrical Contractors Association

Representative Specifications

Sam Houston State University | Division 26500 Interior and Exterior Lighting

University of Delaware | Division 265100 Interior Lighting

Cal Poly University San Luis Obispo | Division 265100 Interior Lighting

Relevant Research

Enhancing the Sustainability of Outdoor Floodlighting for Cultural Heritage Buildings

The Performance and Impact of LED Floodlights in an Outdoor Electrical Substation During Misty Weather Conditions

Replacement of HPS Luminaires with LED Luminaires for the Lighting Requirements of an Outdoor Electrical Substation

 

Emergency and Standby Power Systems

Sporty weather season in the United States inspires a revisit of best practice for designing, building and maintaining the systems that provide limited electricity when the primary source fails. We have been active in the development of this and related titles for decades and have presented several proposals to the technical committee. Public input for the 2028 Revision will be received until June 4, 2025.

Electrical building, World’s Columbian Exposition, Chicago (1892)

FREE ACCESS to the 2022 Edition of NFPA 110 Standard for Emergency and Standby Power Systems

The scope of NFPA 110 and NFPA 111 are close coupled  and summarized below:

NFPA 110 Standard for Emergency and Standby Power Systems. This standard contains requirements covering the performance of emergency and standby power systems providing an alternate source of electrical power to loads in buildings and facilities in the event that the primary power source fails.

NFPA 111 Stored Electrical Energy for Emergency and Standby Power Systems. This standard shall cover performance requirements for stored electrical energy systems providing an alternate source of electrical power in buildings and facilities in the event that the normal electrical power source fails.

FIRST DRAFT AGENDA | August 2022

Public comment on the First Draft of the 2025 Edition will be received until May 31, 2023.  

We have advocated in this standard since 1996 and still use the original University of Michigan Workspace; though those workspaces must be upgraded to the new Google Sites during 2021.  We provide a link to the Standards Michigan Workspace and invite you to join any of our electrical colloquia which are hosted jointly with the IEEE Education & Healthcare Facilities Committee four times per month in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [96-04]

Category: Electrical, Risk

Contact: Mike Anthony, Robert Arno, Neal Dowling, Jim Harvey, Robert Schuerger, Mike Hiler

More

ITM of Emergency Power Systems

Planning for Higher Education Journal: Revisiting the Campus Power Dilemma: A Case Study

Tom is a long-time colleague and friend so Mike happily posts his content:

454c656374726f746563686e6f6c6f6779

National Electrical Definitions

NFPA Glossary of Terms

International Building Code Chapter 2: Definitions

International Electrotechnical Commission: Electropedia

Because electrotechnology changes continually, definitions (vocabulary) in its best practice literature changes continually; not unlike any language on earth that adapts to the moment and place.

The changes reflect changes in technology or changes in how the technology works in practice; even how the manufacturers create adaptations to field conditions by combining functions.   Any smart electrical component has a digital language embedded in it, for example.

Consider the 2023 National Electrical Code.  Apart from many others the NEC will contain a major change to Article 100 (Definitions); the subject of elevated debate over the past three years.

When we refer “language” we must distinguish between formal language, informal language, colloquial language and dialect which may differ the language spoken, language written at the office and language used on the job site.  “Terms of art”

2026 National Electrical Code | CMP-1 Second Draft Report 

FREE ACCESS: 2020 National Electrical Code (NFPA 70)

2023 NEC Public Input Report CMP-1 (868 pages)

2023 NEC Second Draft Public Comment Report (914 pages)

Are these terms (or, “terms of art”) best understood in context (upstream articles in Chapters 4 through 8) — or should they be adjudicated by the 14 Principals of Code Making Panel 1?   The answer will arrive in the fullness of time.   Many changes to the National Electrical Code require more than one cycle to stabilize.

Code Making Panel 1 has always been the heaviest of all NEC panels.  As explained n our ABOUT, the University of Michigan held a vote in CMP-1 for 20+ years (11 revision cycles) before moving to the healthcare facilities committee for the IEEE Education & Healthcare Facilities Committee.  Standards Michigan continues its involvement on behalf of the US education facility industry — the second largest building construction market.  There is no other pure user-interest voice on any technical committee; although in some cases consulting companies are retained for special purposes.

To serve the purpose of making NFPA 70 more “useable” we respect the Standards Council decision to make this change if it contributes to the viability of the NFPA business model.  We get to say this because no other trade association comes close to having as enduring and as strong a voice:  NFPA stands above all other US-based SDO’s in fairness and consideration of its constituency.  The electrical safety community in the United States is a mighty tough crowd.

If the change does not work, or work well enough, nothing should prohibit reversing the trend toward “re-centralizing” — or “de-centralizing” the definitions.

Public comment on the First Draft of the 2026 Edition will be received until August 28, 2024. 

Technical Committees meet during the last half of October to respond to public comment on the First Draft of the 2026 National Electrical Code. 

Electrical Contractor: Round 1 of the 2023 NEC: A summary of proposed changes (Mark Earley, July 15, 2021)

Electrical Contractor: 2023 Code Article and Definition Revisions: Accepting (NEC) change, part 2 (Mark Earley, March 15, 2022)

Theatre: Lighting Design

Artificial lighting was first introduced to theater dramatic performance stages in the 17th century. The use of candles and oil lamps initially provided a means to illuminate the stage, allowing performances to take place in the evening and enhancing the visibility for both actors and the audience. Before this development, theatrical performances were typically held during daylight hours due to the reliance on natural light.

In the early 17th century, theaters in England began experimenting with various lighting techniques. Thomas Killigrew’s Theatre Royal, Drury Lane, in London, is often credited as one of the first theaters to use artificial lighting. The use of candles and later oil lamps evolved over time, leading to more sophisticated lighting setups as technology advanced.

The 18th and 19th centuries saw further innovations in stage lighting, including the use of gas lamps. Eventually, the introduction of electric lighting in the late 19th and early 20th centuries revolutionized stage lighting, providing theaters with a more reliable and controllable source of illumination. This allowed for greater creativity in the design and execution of lighting effects, contributing significantly to the overall theatrical experience.

Oklahoma City University

More

Stage Lighting 101 — Everything You Need to Know

Boston University: Theater, Lighting Design

Wayne State University: Lighting Design

Illumination 100

 

 

August 14, 2003

“The world is changed by examples, not by opinions.”

Marc Andreesen (Founder of Netscape, the first dominant web browser)

 

August 14, 2003 Power Outage at the University of Michigan

2026 National Electrical Code

Current Issues and Recent Research

Today we examine Second Draft transcripts of the Special Equipment Chapter 6 (CMP-12) and product inspection, testing and certification listings that appear Annex A (CMP-1).

 


Once every eighteen months we spend a week drilling into the National Electrical Code by submitting new proposals or comments on proposed revisions.  Today we review the actions taken by the technical committees on the First Draft.   Responses to committee actions will be received until August 26th.

2026 National Electrical Code Workspace


Premise Wiring

Interconnected Electric Power Production Sources “Microgrids”

National Electrical Definitions

Kitchen Wiring

Solarvoltaic PV Systems

Hospital Plug Load

Data Center Wiring

Electrical Inspector Professional Qualifications

Critical Operations Power Systems

Arenas, Lecture Halls & Theaters

Appliances

Emergency and Standby Power Systems

Luminaires, Lampholders, and Lamps

Electric Vehicle Power Transfer

Art, Design & Fashion Studios

Wiring for Luminaires in High Ceiling Occupancies

Infotech 200

INCITS: InterNational Committee for Information Technology StandardsExecutive Board

Today we break down the literature for building, maintaining and supporting the computing infrastructure of education communities.  We use the term “infotech” gingerly to explain action for a  broad span of technologies that encompass enterprise servers and software, wireless and wired networks, campus phone networks, and desktop computers that provide administrative services and career tech video production.   The private sector has moved at light speed to respond to the circumstances of the pandemic; so have vertical incumbents evolving their business models to seek conformance revenue in this plasma-hot domain.

In 2023 we began breaking down the topic accordingly:

Infotech 100: Survey of the principal standards developing organizations whose catalogs are incorporated by reference into federal and state legislation.  Revision cycles.

Infotech 200: Campus computing facilities for research and education

Infotech 300: Communication networks, wired and unwired at the demarcation point; crucial for defining the responsibilities and boundaries between the service provider and the customer.

Infotech 400:  System, middleware and software — Python, Fortran 2018, Apache, Julia, C++ and others

Infotech 300

We collaborate closely with the IEEE Education and Healthcare Electrotechnology Committee.  Use the login credentials at the upper right of our home page.

 

Internet of Small Things

Freely Available ICT Standards

Outdoor Deicing & Snow Melting

Electrical Safety

“Snow at Argenteuil” | Claude Monet (1875)

Today our focus turns to outdoor electric deicing and snow melting wiring systems identified as suitable for the environment and installed in accordance with the manufacturer’s instructions.  They work silently to keep snow load from caving in roofs and icicles falling from gutters onto pedestrian pathways.

While the voltage and ampere requirement of the product itself is a known characteristic, the characteristic 0f the wiring pathway — voltage, ampere, grounding, short circuit, disconnect and control — is relatively more complicated and worthy of our attention.   Articles 426-427 of the National Electrical Code is the relevant part of the NEC

Free Access 2023 National Electrical Code

Insight into the ideas running through technical committee deliberations is provided by a review of Panel 17 transcripts:

2023 NEC Panel 17 Public Input Report (633 pages)

2023 NEC Panel 17 Public Comment Report (190 pages)

We hold Articles 427 in the middle of our priority ranking for the 2023 NEC.   We find that the more difficult issues for this technology is the determination of which trade specifies these systems — architectural, electrical, or mechanical; covered in previous posts.   Instead, most of our time will be spent getting IEEE consensus products in step with it, specifically ANSI/IEEE 515 and IEEE 844/CSA 293.

Comments on the Second Draft of the 2026 NEC will be received until April 18th.

454c656374726f746563686e6f6c6f6779

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with IEEE Standards Coordinating Committee 18 whose members are charged by the IEEE Standards Association to coordinate NFPA and IEEE consensus products.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer


LEARN MORE:

IEEE Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Heat Tracing for Commercial Applications

844.2/CSA C293.2-2017 – IEEE/CSA Standard for Skin Effect Trace Heating of Pipelines, Vessels, Equipment, and Structures–Application Guide for Design, Installation, Testing, Commissioning, and Maintenance

 

Microgrids

We were doing microgrids before microgrids were cool.  We did not call our school boiler plants or campus district energy systems “microgrids” until the EPACT flooded the electrical power industry with a new cadre of policy makers, regulators and litigators and we were forced into a vocabulary upgrade.

National Electrical Code Article 705 Interconnected Power Sources: Second Draft Transcript

We resume our engagement (and advocacy) for a few concepts which have tracked in the NFPA and IEEE standards development catalogs since the early 1990’s:

  1. Nudge development of the National Electrical Code to recognize that loss of electrical power presents (i.e. reliability, availability) a greater hazard, and more frequent hazard, than wiring fire hazard.
  2. The application of stand-alone AC to DC inverters in the 100 – 1000 watt range to convert DC power from an automobile to households.  A portable vehicle to home 120 VAC outlet strip is effectively a “microgrid” and costs less than $100 not including the extension cords.  
  3. Expansion of the hybrid vehicle fittings with a built-in inverter to provide power to households in the 1000-2000 watt range.  In contemporary parlance this arrangement is now referred to as “vehicle to home” (different than vehicle to grid)
  4. Relaxation of NEC prohibitions against the sharing of residential backup generators and electric storage equipment between two or more separate houses.  This can reduce cost significantly.  Earthing, ground fault, disconnect, overcurrent protection can easily be solved if the vertical incumbents we describe in our ABOUT stop voting against us in the National Electrical Code
  5. Stepping up the backup power systems that maintain the needed power for neighborhood internet access.  Not all students and faculty live on campus.  
  6. Policy makers and regulators should think in terms of setting standards for 10-day, 30-day and 90-day survivability contingencies to limit civil unrest.
  7. Preservation of contingencies with a judicious combination of absorption and electric chillers no matter what the electric rate.  During a major regional contingency power is priceless. 
  8. Promote a “cultural change” among specifiers and university design guideline writers to permit use of aluminum wiring which cost 1/3 less than copper wiring.   Use of aluminum wiring for backup “swing feeders” at medium voltage reduces the cost of an additional contingency by 2/3rds.
  9. Reduce National Electrical Code circuit sizing rules so that distribution transformers within buildings can be reduced, thereby reducing material, heat waste and the reduction of wet-stacking in backup generators which reduces reliability.

National Electrical Definitions

This should be enough for an hour.  We continue the conversation 4 times monthly with the IEEE Education & Healthcare Facilities Committee.  Feel free to join us today with the login credentials at the upper right of our home page.

University of Delaware Vehicle to Grid Research

P2030.12/D1.4, Jun 2022 – IEEE Draft Guide for the Design of Microgrid Protection Systems

A Review on Microgrids’ Challenges & Perspectives

Long-term experience of DC-microgrid operation

P2030.10/D12, Apr 2021 – IEEE Approved Draft Standard for DC Microgrids for Rural and Remote Electricity Access Applications

Hierarchical Network Management of Industrial DC-Microgrids

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content