Tag Archives: Summer

Loading
loading..

Hot Dog University

The iconic American “street food” traces its origin to 19th century German immigrants who brought frankfurters from their homeland.

In the 1860s, the term “hot dog” emerged in reference to these sausages being sold in buns at street carts. The popularity of hot dogs soared during the late 19th and early 20th centuries particularly at baseball games where the hot dog is virtually synonymous.at the sport.

In many college towns push cart hot dog vendors may be welcomed and even embraced as part of the local food scene. They can add variety and convenience for students, faculty, and staff by offering affordable and quick meal options. These towns may have regulations and policies in place to support and accommodate such vendors.

The case against hot dogs as a food primarily revolves around health concerns and potential risks associated with their consumption. Some of the key arguments include:

Processed meat and additives: Hot dogs are often made from processed meats that can contain additives, preservatives, and high levels of sodium. These additives, such as nitrates and nitrites, have been linked to increased risks of certain health issues, including cancer and heart disease.

High in unhealthy fats: Hot dogs are typically high in saturated and trans fats, which can contribute to elevated cholesterol levels and increase the risk of cardiovascular diseases.

Potential for contamination: There have been instances of foodborne illnesses associated with hot dogs, such as outbreaks of bacterial contamination, including E. coli or Listeria monocytogenes. Improper handling, storage, or undercooking can increase the risk of such contamination.

Allergens and dietary restrictions: Hot dogs often contain common allergens like wheat, soy, and dairy. Additionally, they may not be suitable for individuals with dietary restrictions or preferences, such as vegetarians, vegans, or those following specific religious or cultural dietary guidelines.

Environmental impact: The production and consumption of hot dogs contribute to environmental concerns. The meat industry, including processed meat production, is associated with greenhouse gas emissions, land degradation, and water pollution.

These arguments against hot dogs do not necessarily apply to all hot dogs or to every individual. Moderation, choosing healthier options, and considering individual dietary needs and preferences can help mitigate some of the concerns associated with hot dog consumption.

Paul Mitchell The School | Tinley Park

Relevant codes, standards and regulations:

Food Safety and Inspection Service: Federal Meat Inspection Act

U.S. Department of Agriculture: Hot Dogs and Food Safety

Codex Alimentarius

Nourriture d’automne

Pool, Spa & Recreational Waters

“Innenansicht des Kaiserbades in Aachen” | Jan Luyken (1682)

Education communities provide a large market for recreational and therapeutic water technology suppliers.  Some of the larger research universities have dozens of pools including those in university-affiliated healthcare facilities.  Apart from publicly visible NCAA swimming programs there are whirpools in healthcare facilities and therapeutic tubs for athletes in other sports.   Ownership of these facilities requires a cadre of conformance experts to assure water safety.

NSF International is one of the first names in this space and has collaborated with key industry stakeholders to make pools, spas and recreational water products safer since 1949.   The parent document in its suite is NSF 50 Pool, Spa and Recreational Water Standards  which  covers everything from pool pumps, strainers, variable frequency drives and pool drains to suction fittings, grates, and ozone and ultraviolet systems.  

The workspace for this committee is linked below:

Joint Committee on Recreational Water Facilities

(Standards Michigan is an observer on this and several other NSF committees and is the only “eyes and ears” for the user interest; arguably the largest market for swimming pools given their presence in schools and universities.)

There are 14 task groups that drill into specifics such as the following:

Chemical feeders

Pool chemical evaluation

Flotation systems

Filters

Water quality

Safety surfacing

The meeting packet is confidential to registered attendees.  You may communicate directly with the NSF Joint Committee Chairperson, Mr. Tom Vyles (admin@standards.nsf.org) about arranging direct access as an observer or technical committee member.   

Almost all ANSI accredited technical committees have a shortage of user-interests (compliance officers, manufacturers and installers usually dominate).  We encourage anyone in the education facility industry paying the bill for the services of compliance officers, manufacturers and installers to participate. 

We maintain this title on the standing agenda of our Water and Sport colloquia.  See our CALENDAR for the next onine meeting; open to everyone.

Fullerton College

Issue: [13-89]

Category: Water, Sport

Colleagues: Mike Anthony, Ron George, Larry Spielvogel


More

Model Aquatic Health Code

IAPMO Swimming Pool & Spa Standards 

UL 1081 Standard for Swimming Pool Pumps, Filters, and Chlorinators | (UL Standards tend to be product standards so we rank them lower in our priority ranking than interoperability standards.)

Aquatic Health Code

Red, White and Blue Smoothie

University System of Maryland | $12.225B

Strawberries

Blueberries

University of Maryland Extension

Standards Maryland

The choice of red, white, and blue in national flags often carries historical, cultural, and political significance. Here are some reasons why various nations have chosen these colors:

  1. Historical Connections:
    • United States: The colors were chosen for their flag in 1777 and have been interpreted to symbolize valor (red), purity (white), and justice (blue). The colors were influenced by the British Union Jack.
    • France: The Tricolour flag adopted during the French Revolution represents liberty (blue), equality (white), and fraternity (red).
    • United Kingdom: The Union Jack combines elements from the flags of England (red and white), Scotland (blue and white), and Ireland (red and white).
  2. Cultural and Political Significance:
    • Russia: The flag’s colors were adopted from the Dutch flag, symbolizing pan-Slavism (red for bravery, blue for faithfulness, and white for honesty).
    • Netherlands: The Dutch flag’s colors (originally derived from the Prince’s Flag) have historical roots, symbolizing the struggle for independence and liberty.
    • Czech Republic and Slovakia: Both countries use red, white, and blue to represent their Slavic heritage.
  3. Influence and Inspiration:
    • Chile, Costa Rica, and Panama: These countries were influenced by the colors and symbolism of other flags (e.g., the French and American flags) during their independence movements.
    • Australia and New Zealand: Both countries incorporate the Union Jack in their flags, reflecting their colonial history with the United Kingdom.
  4. Symbolism:
    • Croatia, Serbia, and Slovenia: The colors are traditional pan-Slavic colors, representing freedom and national unity.
    • Iceland and Norway: The colors reflect their historical and cultural ties to other Scandinavian countries.

The exact reasons can vary, but often the colors reflect a mix of historical alliances, cultural heritage, and political ideals.

 

Ice Cream at the Rock

“The only emperor is the emperor of ice cream”

— Wallace Stevens

 

Michigan Central

The invention of ice cream, as we know it today, is a product of historical evolution, and there isn’t a single individual credited with its creation. Various cultures and civilizations throughout history have contributed to the development of frozen treats resembling ice cream.

One of the earliest records of frozen desserts can be traced back to ancient China, where people enjoyed a frozen mixture of milk and rice around 200 BC. Similarly, ancient Persians and Arabs had a tradition of mixing fruit juices with snow or ice to create refreshing treats.

In Europe, frozen desserts gained popularity in the 17th and 18th centuries, and it was during this time that the more modern version of ice cream, made with sweetened milk or cream, began to take shape. During this period, ice cream became more widely accessible and enjoyed by the nobility and upper classes.



MSU Extension: Dairy Store

MSU Infrastructure Planning and Facilities

To produce ice cream on a commercial scale, several key pieces of infrastructure and equipment are necessary. The specific requirements may vary depending on the production capacity and the type of ice cream being produced, but the basic infrastructure typically includes:

  1. Manufacturing Facility: A dedicated space or building is needed to house all the production equipment and storage facilities. The facility should comply with local health and safety regulations and be designed to maintain the required temperature and hygiene standards.
  2. Mixing and Blending Equipment: Industrial-scale mixers and blending machines are used to mix ingredients like milk, cream, sugar, stabilizers, emulsifiers, and flavorings. These machines ensure that the mixture is homogenized and consistent.
  3. Pasteurization Equipment: To ensure product safety and extend shelf life, ice cream mix needs to be pasteurized. Pasteurization equipment heats the mixture to a specific temperature and then rapidly cools it to destroy harmful microorganisms.
  4. Homogenizers: Homogenizers help break down fat molecules in the ice cream mix to create a smoother and creamier texture.
  5. Aging Vats: The ice cream mix is aged at a controlled temperature for a specific period, which allows the ingredients to fully blend and improves the ice cream’s texture.
  6. Freezers: Continuous freezers or batch freezers are used to freeze the ice cream mix while incorporating air to create the desired overrun (the amount of air in the final product). Continuous freezers are more commonly used in large-scale production, while batch freezers are suitable for smaller batches.
  7. Hardening and Storage Room: Once the ice cream is frozen, it needs to be hardened at a lower temperature to achieve the desired texture. Storage rooms are used to store finished ice cream at the appropriate temperature until distribution.
  8. Packaging Equipment: Equipment for filling and packaging the ice cream into various containers, such as cartons, tubs, or cones.
  9. Quality Control and Laboratory Facilities: A dedicated area for quality control testing, where ice cream samples are analyzed for consistency, flavor, and other characteristics.
  10. Cleaning and Sanitation Systems: Proper cleaning and sanitation systems are essential to maintain hygiene and prevent contamination.
  11. Utilities: Adequate water supply, electrical power, and refrigeration capacity are critical for ice cream production.

Food Code 2017

Food 500


Nitro Cold Brew

Consolidated Financial Statement 2024: $3.541B

Nitro cold brew is bubbling up in coffee shops almost everywhere. The nitrogen-infused beverage became one of the hottest new offerings for coffee lovers looking for something different.   The cold brew — made by steeping coffee grinds in cold water for multiple hours — is dispensed from a stout tap, similar to what you’d find at your local bar.

Image: Chemical & Engineering News

WBUR City Space | Campus Planning & Operations


 

City Journal (February 6): “The Downfall of Ibram X. Kendi”

Discusses the collapse of Kendi’s Center for Antiracist Research at Boston University, alleging mismanagement of $55 million with minimal research output. Describes Kendi as a “symbol of the BLM era’s destructive passions” and notes his move to Howard University. 

— Christopher F. Rufo

Cold Brew Coffee

“An alleged scientific discovery has no merit

unless it can be explained to a barmaid.”

“Radio Transformations” 1906, Ernest Rutherford

Financial Statements 2023 | ($-14.834 M) Deficiency excess of revenue over expenses

Codes Canada

Art & Science of Cold Brew & Why

 


 

Frenglish

Danse de recherche sur le cancer

Backstage Tour

Readings: The “30-30” Rule for Outdoor Athletic Events Lightning Hazard

Thunderstorm | Shelter (Building: 30/30 Rule)

The standards for delaying outdoor sports due to lightning are typically set by governing bodies such as sports leagues, associations, or organizations, as well as local weather authorities. These standards may vary depending on the specific sport, location, and level of play. However, some common guidelines for delaying outdoor sports due to lightning include:

  1. Lightning Detection Systems: Many sports facilities are equipped with lightning detection systems that can track lightning activity in the area. These systems use sensors to detect lightning strikes and provide real-time information on the proximity and severity of the lightning threat. When lightning is detected within a certain radius of the sports facility, it can trigger a delay or suspension of outdoor sports activities.
  2. Lightning Distance and Time Rules: A common rule of thumb used in outdoor sports is the “30-30” rule, which states that if the time between seeing lightning and hearing thunder is less than 30 seconds, outdoor activities should be suspended, and participants should seek shelter. The idea is that lightning can strike even when it is not raining, and thunder can indicate the proximity of lightning. Once the thunder is heard within 30 seconds of seeing lightning, the delay or suspension should be implemented.
  3. Local Weather Authority Guidelines: Local weather authorities, such as the National Weather Service in the United States, may issue severe weather warnings that include lightning information. Sports organizations may follow these guidelines and suspend outdoor sports activities when severe weather warnings, including lightning, are issued for the area.
  4. Sports-Specific Guidelines: Some sports may have specific guidelines for lightning delays or suspensions. For example, golf often follows a “Play Suspended” policy, where play is halted immediately when a siren or horn is sounded, and players are required to leave the course and seek shelter. Other sports may have specific rules regarding how long a delay should last, how players should be informed, and when play can resume.

It’s important to note that safety should always be the top priority when it comes to lightning and outdoor sports. Following established guidelines and seeking shelter when lightning is detected or severe weather warnings are issued can help protect participants from the dangers of lightning strikes.

Noteworthy: NFPA titles such as NFPA 780 and NFPA 70 Article 242 deal largely with wiring safety, informed by assuring a low-resistance path to earth (ground)

There are various lightning detection and monitoring devices available on the market that can help you stay safe during thunderstorms. Some of these devices can track the distance of lightning strikes and alert you when lightning is detected within a certain radius of your location. Some devices can also provide real-time updates on lightning strikes in your area, allowing you to make informed decisions about when to seek shelter.

Examples of such devices include personal lightning detectors, lightning alert systems, and weather stations that have lightning detection capabilities. It is important to note that these devices should not be solely relied upon for lightning safety and should be used in conjunction with other safety measures, such as seeking shelter indoors and avoiding open areas during thunderstorms.

Push-Cart Cold Brew

Standards IndianaIndiana University Total Net Position: $5.223B

The Science of Food Standards

Exploration of the Theory of Electric Shock Drowning

Exploration of the Theory of Electric Shock Drowning

Jesse Kotsch – Brandon Prussak – Michael Morse – James Kohl

University of San Diego

Abstract:  Drowning due to electric shock is theorized to occur when a current that is greater than the “let go” current passes through a body of water and conducts with the human body. Drowning would occur when the skeletal muscles contract and the victim can no longer swim. It is theorized that the likelihood of receiving a deadly shock in a freshwater environment (such as a lake) is higher than the likelihood in a saltwater environment (such as a marina). It is possible that due to the high conductivity of salt water, the current shunts around the individual, while in freshwater, where the conductivity of the water is lower than that of the human; a majority of the current will travel through the individual. The purpose of this research is to either validate or disprove these claims. To address this, we used Finite Element analysis in order to simulate a human swimming in a large body of water in which electric current has leaked from a 120V source. The conductivity of the water was varied from .005 S/m (pure water) up to 4.8 S/m (salt water) and the current density through a cross sectional area of the human was measured. With this research, we hope to educate swimmers on the best action to take if caught in such a situation.

CLICK HERE to order complete paper.

Marina & Boatyard Electrical Safety

Facilities Management

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content