Here we shift our perspective 120 degrees to understand the point of view of the Producer interest in the American national standards system (See ANSI Essential Requirements). The title of this post draws from the location of US and European headquarters. We list proposals by a successful electrical manufacturer for discussion during today’s colloquium:
2026 National Electrical Code
CMP-1: short circuit current ratings, connections with copper cladded aluminum conductors, maintenance to be provided by OEM, field markings
CMP-2: reconditioned equipment, receptacles in accessory buildings, GFCI & AFCI protection, outlet placement generally, outlets for outdoor HVAC equipment(1)
(1) Here we would argue that if a pad mount HVAC unit needs service with tools that need AC power once every 5-10 years then the dedicated branch circuit is not needed. Many campuses have on-site, full-time staff that can service outdoor pad mounted HVAC equipment without needing a nearby outlet. One crew — two electricians — will run about $2500 per day to do anything on campus.
CMP-3: No proposals
CMP-4: solar voltaic systems (1)
(1) Seems reasonable – spillover outdoor night time lighting effect upon solar panel charging should be identified.
CMP-5: Administrative changes only
CMP-6: No proposals
CMP-7: Distinction between “repair” and “servicing”
CMP-10: Short circuit ratings, service disconnect, disconnect for meters, transformer secondary conductor, secondary conductor taps, surge protective devices, disconnecting means generally, spliced and tap conductors, more metering safety, 1200 ampere threshold for arc reduction technology, reconditioned surge equipment shall not be permitted, switchboard short circuit ratings
Disagree with someone and cannot persuade them? Do you need to hide your intransigence or ulterior motive? Then change the basis of discussion by changing the subject with a different definition.
This happens routinely in political discourse and rather frequently in best practice discovery and promulgation in building construction and settlement infrastructure standards[1]. Assuming all parties are negotiating in good faith resolution may lie in agreement on a common understanding of what a satisfying agreement might look like.
Admittedly, a subtle and challenging topic outside our wheelhouse[2] hence the need to improve our organization of this topic starting with today’s colloquium; with follow on sessions every month.
Starting 2025 we will organize our approach to this topic, thus:
Language 100. Survey of linguistic basics for developing codes, standards and regulations. Many vertical incumbents have developed their own style manuals
Language 200. Electrotechnical vocabulary
Language 300. Architectural and Allied trade vocabulary
Language 400. The language of government regulations; the euphemisms of politicians with influence over the built environment
Language 500. Advanced topics such as large language models or spoken dialects such as “High Michigan” — arguably, the standard American dialect where it applies to the standards listed above.
It may not be obvious how profound the choice of words and phrases have on leading practice discovery and promulgation. For example, “What is Gender” determines the number, placement and functionality of sanitary technologies in housing, hospitals and sporting. The United States has a Supreme Court justice that cannot define “woman”
As always, we will respond to public consultation opportunities wherever we can find them. Some organizations are better than this than others.
Today we limit our discussion to language changes in the catalogs of ANSI-accredited standards developers whose titles have the most influence over the interoperability of safety and sustainability technologies that create and sustain the built environment of educational settlements.
Every building construction discipline has its own parlance and terms of art.
This is enough for a one-hour session and, depending upon interest, we will schedule a breakout session outside of our normal “daily” office hours. Use the login credentials at the upper right of our home page.
ΒΙΒΛΙΟΘΗΚΕΣ
Starting 2024 and running into 2025 we will break down this topic further, starting with construction contract language — Lingua Franca 300:
Asset management applies to any organization. As such, understanding its terminology, principles, and outcomes is key to an organization’s success. ISO 55000:2024 provides an overview of #AssetManagement and its expected benefits. @isostandardshttps://t.co/XZsWvJJ8r4
(1) The United States government defines a “Green Building” as a building that has been designed, constructed, and operated in a way that reduces or eliminates negative impacts on the environment and occupants. The government has established various standards and certifications that buildings can achieve to be considered “green.”
The most widely recognized green building certification in the United States is the Leadership in Energy and Environmental Design (LEED) certification, which is administered by the U.S. Green Building Council (USGBC). To achieve LEED certification, a building must meet certain standards related to sustainable site development, water efficiency, energy efficiency, materials selection, and indoor environmental quality.
In addition to the LEED certification, there are other programs and standards that can be used to measure and certify the sustainability of buildings, such as the Green Globes rating system and the Living Building Challenge.
Overall, the goal of green building is to create buildings that are not only environmentally sustainable but also healthier, more comfortable, and more efficient for occupants, while reducing energy consumption and greenhouse gas emissions. By promoting green building practices, the U.S. government aims to reduce the environmental impact of the built environment and move towards a more sustainable future.
(2) The U.S. Green Building Council is a conformance organization. See the discussion our ABOUT for background on incumbent stakeholders.
This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
The NPADC is a team competition for law students to develop skills in drafting patent applications, focusing on U.S. patent law. Teams receive a hypothetical invention statement, conduct prior art searches, draft specifications and claims, and present their work to judges, including patent examiners and practitioners. For 2025, the invention was an extra-uterine system for supporting premature fetuses, indicating the complexity of tasks involved
There is no publicly available timetable for the 2026 National Patent Application Drafting Competition (NPADC) from the United States Patent and Trademark Office (USPTO) as of the latest available information. The USPTO typically releases detailed schedules for the NPADC closer to the competition year, often in the fall of the preceding year (e.g., October or November 2025 for the 2026 competition).
After months of hard work, the top five teams met at USPTO headquarters today for the final round of the 2025 National Patent Application Drafting Competition. 🏆 And the winners are … ⬇️
Thomas Jefferson was the leader in founding the United States Patent Office. Jefferson was a strong supporter of the patent system and believed that it was essential for promoting innovation and progress in the United States. As the first Secretary of State Jefferson was responsible for implementing the country’s patent system.
Article I, Section 8, Clause 8 of the United States Constitution reads as follows:
“The Congress shall have Power To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.”
In 1790, Jefferson drafted the first Patent Act, which established the procedures for applying for and granting patents. The act also created the United States Patent Office as a government agency to oversee the patent system. Jefferson appointed the first Patent Board, which was responsible for reviewing patent applications and making recommendations to the Secretary of State.
Jefferson was deeply involved in the early development of the Patent Office and was instrumental in shaping its policies and procedures. He believed that the patent system should be accessible to all inventors, regardless of their social or economic status, and he worked to streamline the patent application process to make it more efficient and user-friendly.
In recognition of his contributions to the development of the patent system, Jefferson is often referred to as the “Father of American Innovation.”
This clause grants Congress the authority to establish a system of patents and copyrights to protect the intellectual property of inventors and authors. The purpose of this system is to encourage innovation and creativity by providing inventors and authors with a temporary monopoly on their creations, allowing them to profit from their work and invest in future projects. The clause also emphasizes the importance of promoting the progress of science and the useful arts, reflecting the belief of the founders that the development of new technologies and inventions was essential for the growth and prosperity of the United States.
Over the years, the Patent Office has played a crucial role in the development of the United States as a technological leader, granting patents for inventions ranging from the telephone and the light bulb to the airplane and the computer. Today, the Patent Office is part of the United States Department of Commerce and is responsible for examining patent applications and issuing patents to inventors and companies.
Congratulations to the winners of this year’s National Patent Application Drafting Competition – Khailee, Bree, Rita, and Maria from @gwlaw, and thank you to all participants! Learn more about the competition: https://t.co/gB64fnXaM6pic.twitter.com/FWqak6Mr1m
From creating a race car safety device that protects drivers from injury to revolutionizing chemotherapy, Spartans have contributed to more than 3,300 inventions. #SpartansWillpic.twitter.com/dchCs0BFBx
Open source standards development is characterized by very open exchange, collaborative participation, rapid prototyping, transparency and meritocracy. The Python programming language is a high-level, interpreted language that is widely used for general-purpose programming. Python is known for its readability, simplicity, and ease of use, making it a popular choice for beginners and experienced developers alike. Python has a large and active community of developers, which has led to the creation of a vast ecosystem of libraries, frameworks, and tools that can be used for a wide range of applications. These include web development, scientific computing, data analysis, machine learning, and more.
Another important aspect of Python is its versatility. It can be used on a wide range of platforms, including Windows, macOS, Linux, and even mobile devices. Python is also compatible with many other programming languages and can be integrated with other tools and technologies, making it a powerful tool for software development. Overall, the simplicity, readability, versatility, and large community support of Python make it a valuable programming language to learn for anyone interested in software development including building automation.
As open source software, anyone may suggest an improvement to Python(3.X) starting at the link below:
Python can be used to control building automation systems. Building automation systems are typically used to control various systems within a building, such as heating, ventilation, air conditioning, lighting, security, and more. Python can be used to control these systems by interacting with the control systems through the building’s network or other interfaces.
There are several Python libraries available that can be used for building automation, including PyVISA, which is used to communicate with instrumentation and control systems, and PyModbus, which is used to communicate with Modbus devices commonly used in building automation systems. Python can also be used to develop custom applications and scripts to automate building systems, such as scheduling temperature setpoints, turning on and off lights, and adjusting ventilation systems based on occupancy or other variables. Overall, Python’s flexibility and versatility make it well-suited for use in building automation systems.
.@PyCon US 2025 is a wrap, and our hearts are full with #Python community love! Thanks to every single one of you who organized, volunteered, attended, & sponsored 🐍🫶 #PyConUS
The PSF office will be closed May 26-28 so our staff can rest & recover. See you back online soon! pic.twitter.com/Sy1hiRmvw4
— Python Software Foundation (@ThePSF) May 27, 2025
Transportation Research Institute Driver Interface Group
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
Abstract. Research problem: Readability equations are widely used to compute how well readers will be able to understand written materials. Those equations were usually developed for nontechnical materials, namely, textbooks for elementary, middle, and high schools. This study examines to what extent computerized readability predictions are consistent for highly technical material – selected Society of Automotive Engineers (SAE) and International Standards Organization (ISO) Recommended Practices and Standards relating to driver interfaces. Literature review: A review of original sources of readability equations revealed a lack of specific criteria in counting various punctuation and text elements, leading to inconsistent readability scores. Few studies on the reliability of readability equations have identified this problem, and even fewer have systematically investigated the extent of the problem and the reasons why it occurs. Research questions:
(1) Do the most commonly used equations give identical readability scores?
(2) How do the scores for each readability equation vary with readability tools?
(3) If there are differences between readability tools, why do they occur?
(4) How does the score vary with the length of passage examined?
ICYMI. The OED has recently been updated with:
new words, phrases and senses added
more than 1,000 entries revised
new audio files and pronunciation transcriptions from Northern England and North-Eastern England
and more!
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T