Author Archives: mike@standardsmichigan.com

Loading
loading...

Design Rainfall Values on Louisiana Infrastructure

Standards Louisiana

bucolia

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Louisiana State University Facility Services

Louisiana State University Planning, Design & Construction: Design Standards

Flood Abatement Equipment

Lightning Protection Systems

“Benjamin Franklin Drawing Electricity from the Sky” 1816 Benjamin West

 

Benjamin Franklin conducted his famous experiment with lightning on June 10, 1752.

He used a kite and a key to demonstrate that lightning was a form of electricity.

This experiment marked an important milestone in understanding the nature of electricity

and laid the foundation for the development of lightning rods and other lightning protection systems.

 

Seasonal extreme weather patterns in the United States, resulting in damages to education facilities and delays in outdoor athletic events — track meets; lacrosse games, swimming pool closures and the like — inspire a revisit of the relevant standards for the systems that contribute to safety from injury and physical damage to buildings: NFPA 780 Standard for the Installation of Lightning Protection Systems

FREE ACCESS

To paraphrase the NFPA 780 prospectus:

  • This document shall cover traditional lightning protection system installation requirements for the following:
       (1) Ordinary structures

       (2) Miscellaneous structures and special occupancies
       (3) Heavy-duty stacks
       (4) Structures containing flammable vapors, flammable gases, or liquids with flammable vapors
       (5) Structures housing explosive materials
       (6) Wind turbines
       (7) Watercraft
       (8) Airfield lighting circuits
       (9) Solar arrays
  • This document shall address lightning protection of the structure but not the equipment or installation requirements for electric generating, transmission, and distribution systems except as given in Chapter 9 and Chapter 12.

(Electric generating facilities whose primary purpose is to generate electric power are excluded from this standard with regard to generation, transmission, and distribution of power.  Most electrical utilities have standards covering the protection of their facilities and equipment. Installations not directly related to those areas and structures housing such installations can be protected against lightning by the provisions of this standard.)

  • This document shall not cover lightning protection system installation requirements for early streamer emission systems or charge dissipation systems.

“Down conductors” must be at least #2 AWG copper (0 AWG aluminum) for Class I materials in structures less than 75-ft in height

“Down conductors: must be at least 00 AWG copper (0000 AWG aluminum) for Class II Materials in structures greater than 75-ft in height.

Related grounding and bonding  requirements appears in Chapters 2 and Chapter 3 of NFPA 70 National Electrical Code.  This standard does not establish evacuation criteria.  

University of Michigan | Washtenaw County (Photo by Kai Petainen)

The current edition is dated 2023 and, from the transcripts, you can observe concern about solar power and early emission streamer technologies tracking through the committee decision making.  Education communities have significant activity in wide-open spaces; hence our attention to technical specifics.

2023 Public Input Report

2023 Public Comment Report

Public input on the 2026 revision is receivable until 1 June 2023.

We always encourage our colleagues to key in their own ideas into the NFPA public input facility (CLICK HERE).   We maintain NFPA 780 on our Power colloquia which collaborates with IEEE four times monthly in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Lightning flash density – 12 hourly averages over the year (NASA OTD/LIS) This shows that lightning is much more frequent in summer than in winter, and from noon to midnight compared to midnight to noon.

Issue: [14-105]

Category: Electrical, Telecommunication, Public Safety, Risk Management

Colleagues: Mike Anthony, Jim Harvey, Kane Howard


More

Installing lightning protection system for your facility in 3 Steps (Surge Protection)

IEEE Education & Healthcare Facility Electrotechnology

Readings: The “30-30” Rule for Outdoor Athletic Events Lightning Hazard

Churches and chapels are more susceptible to lightning damage due to their height and design. Consider:

Height: Taller structures are more likely to be struck by lightning because they are closer to the cloud base where lightning originates.

Location: If a church or chapel is situated in an area with frequent thunderstorms, it will have a higher likelihood of being struck by lightning.

Construction Materials: The materials used in the construction of the building can affect its vulnerability. Metal structures, for instance, can conduct lightning strikes more readily than non-metallic materials.

Proximity to Other Structures: If the church or chapel is located near other taller structures like trees, utility poles, or buildings, it could increase the chances of lightning seeking a path through these objects before reaching the building.

Lightning Protection Systems: Installing lightning rods and other lightning protection systems can help to divert lightning strikes away from the structure, reducing the risk of damage.

Maintenance: Regular maintenance of lightning protection systems is essential to ensure their effectiveness. Neglecting maintenance could result in increased susceptibility to lightning damage.

Historical Significance: Older buildings might lack modern lightning protection systems, making them more vulnerable to lightning strikes.

The risk can be mitigated by proper design, installation of lightning protection systems, and regular maintenance. 

Virginia Tech

Electrical Switch Station #8

Construction progress update: May 24, 2024

This project restores the Old Art Gallery building for a new electrical switching station. The 1904 building was originally the campus powerhouse, supplying electricity and steam to the young Berkeley campus. As the campus grew, power demands exceeded its capacity and, in 1930, a new central plant opened in the southwest part of campus. In 1934, the former powerhouse building reopened as a gallery to display art and served this purpose until a new University Art Museum opened on Bancroft Way in 1970. The building was subsequently used for storage for more than 50 years.

In restoring and structurally improving the Old Art Gallery building to house the new Switch Station #8, the small brick building that began its storied life as a powerhouse more than 100 years ago will become a key component in UC Berkeley’s 100% clean energy future.

IEEE TV: Overview of UC Berkely Resistance Grounded Campus Power System

Campus Bulk Electrical Distribution

High Voltage Electric Service

Pacific Gas & Electric: Electric Service Requirements (TD-7001M) 2022-2023″Greenbook Manual”

Swimming, Water Polo and Diving Lighting

 

“In swimming, there are no referees, no foul lines,

no time-outs, and no substitutions.

It’s just you and the water.” – Unknown

 

 

https://standardsmichigan.com/australia/

There are several specific problems that swimming pool overhead lighting aims to solve:

  1. Visibility: Swimming pool overhead lighting is designed to improve visibility in and around the pool. This is important for safety reasons, as it helps swimmers see where they are going and avoid obstacles or hazards.
  2. Aesthetics: Overhead lighting can enhance the appearance of the swimming pool by creating a visually appealing atmosphere. This is especially important for commercial pools where the aesthetics can be an important factor in attracting customers.
  3. Functionality: Overhead lighting can provide additional functionality by allowing the pool to be used during evening hours or in low light conditions. This can increase the usability of the pool and make it more appealing to users.
  4. Energy efficiency: Modern overhead pool lighting solutions are designed to be energy-efficient, reducing the overall energy consumption and operating costs of the pool.
  5. Longevity: Overhead pool lighting must be designed to withstand exposure to water, chlorine, and other harsh chemicals, as well as exposure to the elements. The lighting system must be durable and reliable to ensure longevity and prevent costly repairs or replacements.

Overall, swimming pool overhead lighting is an important component of a safe, functional, and visually appealing pool. It provides illumination for visibility, enhances aesthetics, and improves functionality, while also being energy-efficient and durable.

After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For almost all athletic facilities,  the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

During water sport season the document linked below provides information to illumination designers and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next colloquium on Sport facility codes and standards  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs


More

Time Standards

Sport Lighting

Journal of Irreproducible Results

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Nightengale

Florence Nightingale is best known for her pioneering work in the field of nursing during the Crimean War (1853-1856). She led a team of nurses to the military hospital in Scutari, Turkey, where they improved hygiene, sanitation, and overall medical care for wounded soldiers. Nightingale’s efforts reduced the mortality rate in the hospital by two-thirds and helped establish nursing as a profession. She became known as “The Lady with the Lamp” due to her habit of making rounds at night to check on her patients. Her work during the Crimean War revolutionized the field of nursing and laid the foundation for modern nursing practices.

Florence Nightengale: The Lady with the Lamp

Today we unpack literature informing best practice for the facilities that support nursing and dental education and related clinical delivery.  Many colleges and universities community outreach facilities that serve a combined purpose of teaching and providing clinical care.  We steer away from nursing and dental practice the domain of others.   We include a central feature of most education communities — the school nurse and the college health service center.

For the most part, model building code and safety standards do not differ in any large way from the standards that apply to larger scale educational and clinical delivery occupancies.   Occupancy use and classification is always the first place to start; a discriminating consideration being whether the space is used to provide emergency care, surgery, obstetrics or patient stabilization.  There are a few noteworthy exceptions not covered in Joint Commission and Occupational Health and Safety Administration.

We take the point of view of the stakeholder that opposes over-regulation by government and market-making by producer and conformance interests.  For example, many front-line nurses complain that there is too much paperwork and too much “beeping” at the point of delivery.

2021 International Building Code: Section 407 Group I-2 § 407.2.2 Care Provider Stations

IEEE Education & Healthcare Facility Electrotechnology Committee

NFPA 99: Health Care Facilities Code

ANSI/ASHRAE/ASHE Standard 170-2017, Ventilation of Health Care Facilities

Centers for Medicare & Medicaid Services

Health Level 7 Standards

Nursing and dental health education programs are a significant source of revenue and a significant community obligation that, for the most part, cannot be offloaded onto the internet.

Dr. Akke Neeltje Talsma, University of Wisconsin-Milwaukee

University Medical Center Groningen

Essential Documents of Professional Nursing

National Association of School Nurses

American College Health Association

U.S. Council for Athlete’s Health

Scope of Nursing Practice

"The trained nurse has become one of the great blessings of humanity, taking a place beside the physician and the priest" - William Osler"While we try to teach our children all about life, our children teach us what life is all about" - Angela Schwindt "The true art of pediatrics lies not only in curing diseases but also in preventing them" - Abraham JacobiGermany

CLICK IMAGE

Table of Contents

 

The American Nurses Association has developed several standards related to nursing practice, which are designed to guide the professional practice of nursing and promote quality patient care. Some of the ANA standards include:

  1. Standards of Practice: These standards describe the responsibilities and accountabilities of registered nurses in the provision of safe, competent, and ethical nursing care.
  2. Standards of Professional Performance: These standards describe the behaviors and competencies that are expected of registered nurses in their professional roles, such as leadership, education, and communication.
  3. Code of Ethics for Nurses: This code provides guidance for ethical decision-making and practice in nursing. It includes provisions related to patient rights, confidentiality, professional boundaries, and accountability.
  4. Nursing Administration: This standard addresses the role of nursing administration in ensuring safe and effective nursing care. It includes standards related to leadership, management, and quality improvement.
  5. Nursing Informatics: This standard addresses the role of nursing informatics in improving healthcare outcomes. It includes standards related to the use of technology and information systems in nursing practice.
  6. Advanced Practice Registered Nurses: This standard addresses the role of advanced practice registered nurses (APRNs) in providing safe and effective care. It includes standards related to education, certification, and practice.

It’s worth noting that these are just a few examples of the ANA standards, and that there may be other standards that are relevant to specific areas of nursing practice. The ANA periodically updates its standards to reflect changes in nursing practice and healthcare delivery.

King Street Georthermal

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content