Author Archives: mike@standardsmichigan.com

Loading
loading...

Smart Cities: Wicked Problems

“Oxford from the River with Christ Church in the Foreground” | William Turner (1820)

 

Smart cities: moving beyond urban cybernetics to tackle wicked problems

Cambridge Journal of Regions, Economy and Society, Volume 8, Issue 1, March 2015 | “The Smart City”

 

Abstract. This article makes three related arguments. First, that although many definitions of the smart city have been proposed, corporate promoters say a smart city uses information technology to pursue efficient systems through real-time monitoring and control. Second, this definition is not new and equivalent to the idea of urban cybernetics debated in the 1970s. Third, drawing on a discussion of Rio de Janeiro’s Operations Center, I argue that viewing urban problems as wicked problems allows for more fundamental solutions than urban cybernetics, but requires local innovation and stakeholder participation. Therefore the last section describes institutions for municipal innovation and IT-enabled collaborative planning.

H.R. 8161 Electric Act


Laken Riley Act passes 251-170, with 37 Democrats joining all Republicans in support

The murder of Laken Riley occurred on February 22, 2024, in Athens, Georgia. Laken Riley, a 22-year-old nursing student at Augusta University, disappeared when she was jogging at the University of Georgia (UGA). Her body was found near a lake of a wooded area at UGA; her death was caused by blunt force trauma.  The police described Riley’s killing as a “crime of opportunity”, and that no murder had been committed at UGA in almost 30 years; a gap filled by the open border policy of Democrat President Joseph Biden, Homeland Secretary Alejandro Mayorkas and chain of Democrat District Attorney’s who let the perpetrator run free.

The murder has international news, generating extensive media attention — though not nearly as much as the George Floyd tragedy and the Black Lives Matter zietgeist — sparking debate over illegal immigration in United States after U.S. Immigration and Customs Enforcement (ICE) confirmed that Ibarra is a Venezuelan illegal immigrant who is not a U.S. citizen and was caught crossing the border but released back into the United States

Jose Antonio Ibarra, a 26-year-old Venezuelan citizen who entered the US illegally, was arrested by UGA police and has been charged with felony murder, false imprisonment, and kidnapping.[4] Ibarra lived about 1 mile (1.6 km) from the area where Riley’s body was found..

European leaders are indifferent to the rape and murder of their young women by migrant men also:


But what is government itself but the greatest of all reflections on human nature?  If men were angels, no government would be necessary.  If angels were to govern men, neither external nor internal controls on government would be necessary.  In framing a government which is to be administered by men over men, the great difficulty lies in this:  you must first enable the government to control control the governed; and in the next place oblige it to control itself.”James Madison, Federalist 51

Relevant Federal Executive & Legislative Committees

House of Representatives: Committee on Education & the Workforce

Senate: Committee on Health, Education, Labor and Pensions 

SCOTUS: West Virginia, et al. v. Environmental Protection Agency

United States District Court, Michigan | Martin Luther King Jr. Elementary School et al. v Ann Arbor School District Board


H.R. 305: One School, One Nurse Act of 2023

H.R. 6078: GROWTH Act of 2023

H.R. 3425: To amend the National Agricultural Research, Extension, and Teaching Policy Act of 1977 to authorize capacity building grants for community

H.R. 221: Expand Pell Grant eligibility to certain trade schools

H.R. 193: Teach Relevant Apprenticeships to Drive Economic Success Act

H.R. 202: States’ Education Reclamation Act

H.R. 302: Energy Cybersecurity University Leadership Act of 2023

The University Campus As A Designed Work and an Artefact of Cultural Heritage

Reliability

Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward Hopper

We are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2028 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of com

puting systems.

Resilience of Hospital Power Systems in the Digital Age

Fondazione Policlinico Universitario Agostino Gemelli Rome

 

Operational Resilience of Hospital Power Systems in the Digital Age

Sapienza University of Rome, Roma, Italy
Ospedale Pediatrico Bambino Gesu, Rome, Italy
Parise professional office, Italy
Cosenza Hospital District, Cosenza, Italy
University of Michigan, Ann Arbor, MI, USA

 

Abstract: An advanced guideline is required to support the design of power supply systems for the performances of service continuity and power outage resilience, which are vital for hospital power systems and strategic operational structures (SOSs). The supply sources, the power system topology, and its management are fundamental in guaranteeing the electrical resilience of the power system. There is still no standard to evaluate the adequacy of hospital power systems for natural calamities and human-made disasters and, subsequently, for the ordinary operation. The World Health Organization recognizes it as a basic problem and at this aim has to claim clearly the status of SOSs for the hospitals, recommending to safeguard and plan the full operability. The hospital power systems need a local fortified electrical structure, designed for service continuity during fault events and managed to ensure an adequate dynamic response to any emergency and maintenance needs. The importance of the business continuity management is highlighted; it has to be qualified for a permanent design with both the in-op approaches for the initial installation of the system and its life cycle operation.

CLICK HERE to order complete paper

Un mondo fatto bene

North American Electric Grid Reliability Standards

 

 

 

Standards, Compliance, and Enforcement Bulletin June 26–July 4, 2023

Complete Set of Reliability Standards for the Bulk Electric Systems of North America: June 30, 2023 Update

Electrical Resource Adequacy

https://scontent.fdet1-1.fna.fbcdn.net/v/t1.6435-9/154553195_2914827095459112_4790524209357164724_n.jpg?_nc_cat=110&ccb=1-7&_nc_sid=8bfeb9&_nc_ohc=dVfmvPSf9e8AX_t7Ren&_nc_ht=scontent.fdet1-1.fna&oh=00_AfAIb1popHb5AZ1XUJy-1F0e_OIyEF-preGhK9nVcS0IvA&oe=651D72C5

Reliability Analysis for Power to Fire Pumps

Reliability Analysis for Power to Fire Pump Using Fault Tree and RBD

Robert Schuerger | HP Critical Facilities (Project Lead, Corresponding Author) 

Robert Arno | ITT Excelis Information Systems

Neal Dowling | MTechnology

Michael  A. Anthony | University of Michigan

 

Abstract:  One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.

 

 

CLICK HERE to order complete paper

Power Distribution Reliability Indices

Maysville Community and Technical College

The IEEE Education & Healthcare Facilities Committee (IEEE E&H) tracks campus power outages (as a research project) because many large research universities own and operate power generation and delivery enterprises that run upwards of 100 megawatts — i.e. at a scale that exceeds many municipal and cooperative electrical power utilities that are regulated by state utility commissions.   It has been estimated that power outages on a large research university campus — some with a daily population of 10,000 to 100,000 students, faculty and staff — have an effective cost of $100,000 to $1,ooo,ooo per minute.   

The IEEE E&H Committee uses  IEEE 1366 Guide for Electrical Power Distribution Reliability Indices — as a template for exploring performance metrics of large customer-owned power systems.  Respected voices in the IEEE disagree on many concepts that appear in it but, for the moment, it is the most authoritative consensus document produced by the IEEE Standards Association at the moment. 

According to IEEE Standards Association due processes, a revision to the 2012 version is now at the start of its developmental trajectory:

IEEE 1366 – 2022 Revision

IEEE P1366 PAR Revision Approval   

We will depend upon the IEEE E&H Committee to keep us informed about issues that will affect campus power purchasing contracts.  (There is a fair amount of runway ahead of us.)  Conversely,  no IEEE technical committee ignores “war stories” and solid reliability performance data.   We dedicate one hour every month to electrical power standards.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [11-54]

Category: Electrical, Energy

Colleagues: Mike Anthony, Robert G. Arno, Neal Dowling, Jim Harvey, Kane Howard, Robert S. Schuerger

Enhancing Reliability of Power Systems through IIoT

Current Issues and Recent Research

Salutariness

Salutariness (Cleanliness) standards follow culture (which follows the science which follows water management systems).   What is considered clean or hygienic in one culture may differ from what is considered clean or hygienic in another culture.  In some cultures, it is customary to remove shoes before entering a home, as it is considered unclean to wear shoes indoors.  In Japan, it is customary to take a bath or shower before entering a public bathhouse or hot spring, as it is considered unclean to enter a communal bath without washing first.  Most public swimming pools in the United States conform to a similar standard.

In some cultures, it is customary to eat with one’s hands, while in others, using utensils is the norm. Similarly, in some cultures, it is customary to clean one’s hands and face before eating, while in others, it is not considered necessary.  Cleanliness standards can also vary depending on the level of economic development, access to clean water and sanitation facilities, and public health policies in different countries.  Mahatma Gandhi believed that promoting cleanliness and hygiene could help in building a strong and self-sufficient nation.

“Harlem school custodian to retire, gets cafeteria dedicated to him” | Rockford Register Star

At 15:00 UTC today we review best practice literature for hygiene in education community interior spaces; including related accessory technologies.  Owing to the circumstances of the pandemic we have rewritten our past coverage of this topic for 2022.

Among the standards setting organizations active in this domain: (Short List)

American Society of Mechanical Engineers

ASME: Personal hygiene devices for water closets.

American Society of Heating and Refrigeration Engineers (ASHRAE International)

American Society of Safety Professionals

American Water Works Association

“No Water Fact Sheet”

“Responding to Water Stagnation in Buildings with Reduced or No Water Use” 

Association of Physical Plant Administrators (APPA)

Cleaning Operations

International Association of Plumbing Mechanical Officials (IAPMO Group)

Institute of Electrical and Electronic Engineers

Prospect of Solar-assisted Heat Pump Water Heating Systems for Student Residences

Identification of Legionella Species by Photogate-Type Optical Sensor

Smart Biosensor for Rapid and Simultaneous Detection of Waterborne Pathogens in Tap Water

Innovative UV-C LED Disinfection Systems for DrinkingWater Treatment

Temperature Distributions and Bacterial Growth Implications in a Hot Water Storage Tank under Scheduled Draw-off and Heating Cycles

Institute of Inspection, Cleaning and Restoration Certification

International Code Council

International Building Code: Chapter 12 Interior Environment

International Mechanical Code: Ventilation

International Plumbing Code: Sanitary Drainage

International Kitchen Exhaust Cleaning Association

International Sanitary Supply Association

Design Guidelines

University of Pittsburgh

National Air Duct Cleaners Association

Standard for Assessment, Cleaning and Restoration of HVAC Systems

National Fire Protection Association

“NFPA responds to the coronavirus”

Health Care Facilities Code

National Sanitation Foundation  (Several titles)

“Germiest Places at Schools”

Occupational Safety & Health Administration

CFR 1910.141 Sanitation

Centers for Medicare and Medicaid Services

Simon Institute

Cleaning Chemical Safety

State and Federal Regulations Open for Comment

We place public consultation deadlines at top priority in the time available and will schedule a separate break-out session to write and send comments.

Open to everyone.  Use the login credentials at the upper right of our home page.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content