Category Archives: Architectural/Hammurabi

Loading
loading...

American Vitruvius

University of Michigan North Quad

Robert A. M. Stern is an American architect, educator, and author known for his contributions to the field of architecture, urbanism, and design. Stern has been particularly influential in shaping the aesthetics of educational campuses through his architectural practice and academic involvement. Here are some key aspects of his approach to the aesthetics of educational campuses that attract philanthropic legacies:

  1. Pedagogical Ideals:
    • Stern’s designs for educational campuses often reflect his understanding of pedagogical ideals. He considers the spatial organization and layout of buildings in relation to the educational mission of the institution.
    • Spaces are designed to foster a sense of community, encourage interaction, and support the overall educational experience.
  2. Traditional and Classical Influences:
    • Stern is known for his commitment to classical and traditional architectural styles. He often draws inspiration from historical architectural forms and traditional design principles.
    • His work reflects a belief in the enduring value of classical architecture and its ability to create a sense of timelessness and continuity.
  3. Contextual Design:
    • Stern emphasizes the importance of contextual design, taking into consideration the existing architectural context and the cultural or historical characteristics of the surrounding area.
    • When designing educational campuses, he often seeks to integrate new buildings harmoniously into the existing campus fabric.
  4. Attention to Detail:
    • Stern is known for his meticulous attention to detail. His designs often feature carefully crafted elements, including ornamental details, materials, and proportions.
    • This focus on detail contributes to the creation of visually rich and aesthetically pleasing environments.
  5. Adaptation of Historical Forms:
    • While Stern’s work is firmly rooted in traditional and classical architecture, he also demonstrates an ability to adapt historical forms to contemporary needs. His designs often feature a synthesis of timeless architectural elements with modern functionality.

Hammurabi

Group A Model Building Codes

Trowel Trades

Bricklayers, sometimes known as masons, are skilled craftsmen that must be physically fit, have a high level of mathematical skill and a love for precision and detail.

 

Bricklaying standards are guidelines and specifications that ensure the quality and safety of bricklaying work. These standards are often established by industry organizations, regulatory bodies, or national building codes. While specific standards may vary by region, some core bricklaying standards include:

Building Codes: Compliance with local building codes is essential. These codes provide regulations for construction practices, including specifications for masonry work. Bricklayers must adhere to the building codes relevant to the specific location of the construction project.

ASTM International Standards: ASTM International (formerly known as the American Society for Testing and Materials) develops and publishes technical standards for various industries, including construction. ASTM standards related to bricklaying cover materials, testing procedures, and construction practices.

Masonry Construction Standards: Organizations like the Masonry Standards Joint Committee (MSJC) in the United States publish standards specifically focused on masonry construction. These standards address topics such as mortar, grout, reinforcement, and structural design considerations.

Quality Control: Standards related to quality control in bricklaying include specifications for mortar mixtures, proper curing of masonry, and guidelines for inspecting finished work. Adherence to these standards helps ensure the durability and longevity of the masonry construction.

Safety Standards: Occupational safety standards, such as those outlined by the Occupational Safety and Health Administration (OSHA) in the United States, are critical for protecting workers on construction sites. These standards cover aspects like fall protection, scaffolding safety, and the proper use of personal protective equipment.

Brick and Block Standards: Standards related to the dimensions, composition, and properties of bricks and concrete blocks are important for achieving structural integrity. These standards specify characteristics such as compressive strength, absorption, and dimensional tolerances.

Construction Tolerances: Tolerances dictate acceptable variations in dimensions and alignments in bricklaying work. These standards help ensure that the finished structure meets design specifications and industry-accepted tolerances.

Testing and Inspection: Standards related to the testing and inspection of masonry work help verify that construction meets specified requirements. This includes procedures for mortar testing, grout testing, and overall quality inspections.

It’s important for bricklayers and construction professionals to be aware of and follow these standards to guarantee the safety, quality, and compliance of their work. Additionally, staying informed about updates to industry standards is crucial as they may evolve over time to reflect advancements in materials, techniques, and safety practices.

St. Olaf College | Dakota County Minnesota

International Building Code Chapter 21: Masonry

Catalog: BUILDERS HARDWARE MANUFACTURER ASSOCIATION

 

Builders Hardware Manufacturer Association Standards Catalog


ARCHIVE: April 6, 2019

The Builders Hardware Manufacturers Association (BHMA) is an ANSI accredited standards developing organization for building access and egress technology that education industry real asset managers find referenced deep in the architectural and electrical sections of construction contract specifications (as in “Conform to all applicable standards”).  Architects, electrical, fire protection and information and communications technology professionals usually have to collaborate on the design, construction. operations and maintenance of fenestration technologies.

Gone are the days when a door was just a door (or “opening” or “fenestration”).   Doors are now portals; an easily identifiable control point in the Internet of Things electrotechnical transformation.  There are 100’s of thousands of them on large research university campus; for example.  As we explain in our School Security Standards post the pace of standardization in public safety management and technology has increased; driven by events.  Some of the risk management can be accomplished with integrated technical solutions that are complex and more expensive to design, build, operate and maintain.

A fair estimate of the annualized cost of a door now runs on the order of $1000 to $10,000 per door (with hospital doors at the high end).

Loreto Secondary School | Kilkenny, Ireland

BHMA develops and maintains performance standards for locks, closers, exit devices and other builders hardware.  It has more than 40 ANSI/BHMA  standards. The widely known ANSI/BHMA A156 series of standards describes and establishes features and criteria for an array of builders hardware products including locks, closers, exit devices, butts, hinges, power-operated doors and access control products.   They are listed on the link below:

BHMA Standards Home Page

BHMA has opened one of its standards for public review that is relevant to our contribution to the security and sustainability agenda of the education facility industry; an agenda that necessarily involves a growing constellation of interacting specifics

BHMA A156.4 Standard for Door Controls – Closers.  This Standard contains requirements for door closers surface mounted, concealed in the door, overhead concealed, and concealed in the floor. Also included are pivots for floor closers. Criteria for conformance include cycle, operational, closing force, and finish tests.

Given that BHMA consensus products are largely product standards (much the same way UL Standards are product standards) it is wise to keep an eye on a related installation standards found in the fenestration sections of model building and fire safety codes and in ASTM E2112  Standard Practice for Installation of Exterior Windows, Doors and Skylights.

Comments are due May 6th.  You may obtain an electronic copies of any of the foregoing from [email protected] and send comments to the same (with copy to [email protected]).

Roxbury Community College | Roxbury Crossing, Massachusetts

The BHMA suite is on the standing agenda of our monthly Construction Specification and Design Guideline teleconference; an informal session that should interest building contractors and design professionals who prepare documents that use the general purpose clause: “Conform to all applicable standards”.   That usually means the latest standard.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [19-129]

Category: Architectural, Electrical, Facility Asset Management, Telecommunication, Public Safety, #SmartCampus, Risk Management

Colleagues: Mike Anthony, Jim Harvey. Jim Vibbart

 


LEARN MORE:

BHMA Standards Revision Status Tracking

 

 

Details

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Cambridge Center for Smart Infrastructure & Construction

“Clare Hall and King’s College Chapel, Cambridge, from the Banks of the River Cam” / Joseph Mallord William Turner (1793)

 

Smart Infrastructure: Getting More From Strategic Assets

Dr Jennifer Schooling, Director of CSIC

Dr Ajith Parlikad, CSIC Co-Investigator and Senior Lecturer

Mark Enzer, Global Water Sector Leader

Mott MacDonald; Keith Bowers, Principal Tunnel Engineer, London Underground

Ross Dentten, Asset Information and Configuration Manager, Crossrail

Matt Edwards, Asset Maintenance and Information Manager, Anglian Water Services

Jerry England, Group Digital Railway Director, Network Rail

Volker Buscher, Director, Arup Digital

 

Smart Infrastructure is a global opportunity worth £2trn-4.8trn. The world is experiencing a fourth industrial revolution due to the rapid development of technologies and digital abundance.

Smart Infrastructure involves applying this to economic infrastructure for the benefit of all stakeholders. It will allow owners and operators to get more out of what they already have, increasing capacity, efficiency and resilience and improving services.

It brings better performance at lower cost. Gaining more from existing assets is the key to enhancing service provision despite constrained finance and growing resource scarcity. It will often be more cost-effective to add to the overall value of mature infrastructure via digital enhancements than by physical enhancements – physical enhancements add `more of the same’, whereas digital enhancements can transform the existing as well.

Smart Infrastructure will shape a better future. Greater understanding of the performance of our infrastructure will allow new infrastructure to be designed and delivered more efficiently and to provide better whole-life value.

Data is the key – the ownership of it and the ability to understand and act on it. Industry, organisations and professionals need to be ready to adjust in order to take advantage of the emerging opportunities. Early adopters stand to gain the most benefit. Everyone in the infrastructure sector has a choice as to how fast they respond to the changes that Smart Infrastructure will bring. But everyone will be affected.

Change is inevitable. Progress is optional. Now is the time for the infrastructure industry to choose to be Smart.

 

LEARN MORE:

Cambridge Centre for Smart Infrastructure and Construction


Perspective: Since this paper is general in its recommendations, we provide examples of specific campus infrastructure data points that are difficult, if not impossible, to identify and “make smart” — either willfully, for lack of funding, for lack of consensus, for lack of understanding or leadership:

    1. Maintenance of the digital location of fire dampers in legacy buildings or even new buildings mapped with BIM.  Doors and ceiling plenums are continually being modified and the As-Built information is usually not accurate.  This leads to fire hazard and complicates air flow and assuring occupant temperature preferences (i.e. uncontrollable hot and cold spots) 
    2. Ampere readings of feeder breakers downstream from the electric service main.  The power chain between the service substation and the end-use equipment is a “no-man’s land” in research facilities that everyone wants to meter but few ever recover the cost of the additional metering.
    3. Optimal air flow rates in hospitals and commercial kitchens that satisfies both environmental air hazards and compartmentalized air pressure zones for fire safety.
    4. Identification of students, staff and faculty directly affiliated with the campus versus visitors to the campus.
    5. Standpipe pressure variations in municipal water systems
    6. Pinch points in municipal sewer systems in order to avoid building flooding.
    7. How much of university data center cost should be a shared (gateway) cost, and how much should be charged to individual academic and business units?
    8. Should “net-zero” energy buildings be charged for power generated at the university central heating and electric generation plant?
    9. How much staff parking should be allocated to academic faculty versus staff that supports the healthcare delivery enterprises; which in many cases provides more revenue to the university than the academic units?
    10. Finally, a classical conundrum in facility management spreadsheets: Can we distinguish between maintenance cost (which should be covered under an O&M budget) and capital improvement cost (which can be financed by investors)

 

 

Global Consistency in Presenting Construction & Life Cycle Costs

Research from the World Economic Forum has shown that improvements in the design and construction process can be achieved by using international standards like ICMS to gain comparable and consistent data. ICMS provides a high-level structure and format for classifying, defining, measuring, recording, analysing and presenting construction and other life-cycle costs.

CLICK ON IMAGE


Educational Settlement Finance

Giovanni Paolo Panini, An architectural capriccio with figures among Roman ruins

The post-pandemic #WiseCampus transformation requires significant capital to meet the sustainability goals of its leadership.  Campuses are cities-within-cities and are, to a fair degree, financed in a similar fashion.  Tax-free bonds are an effective instrument for school districts, colleges and universities — and the host community in which they are nested — for raising capital for infrastructure projects while also providing investors with, say $10,000 to $100,000, to allocate toward a tax-free dividend income stream that produces a return in the range of 2 to 8 percent annually.

An aging population may be receptive to investment opportunities that protect their retirement savings from taxation.

Once a month, we walk through the prospectuses of one or two bond offerings of school districts, colleges and universities and examine offering specifics regarding infrastructure construction, operations and maintenance.  We pay particular attention to details regarding “continuing operations”. Somehow the education industry has to pay for its green agenda.  See our CALENDAR for the next Finance colloquium; open to everyone.

The interactive map provided by Electronic Municipal Market Access identifies state-by-state listings of tax-free bonds that contribute to the construction and operation of education facilities; some of which involved university-affiliated medical research and healthcare delivery enterprises.

CLICK ON IMAGE FOR INTERACTIVE MAP

 

If you need help cutting through this list please feel free to click in any day at 11 AM Eastern time.  Use the login credentials at the upper right of our hope page.  We collaborate with subject matter experts at Municipal Analytics and UBS.

Issue: [Various]

Category: Administration & Management, Finance, #SmartCampus

Colleagues: Mike Anthony, John Kaczor, Liberty Ziegahn

*We see the pandemic as a driver for a step-reduction in cost in all dimensions of education communities.  We coined the term with a hashtag about two years ago.

*College and university infrastructure projects are classified with public school districts under the rubric “municipal bonds” at the moment.  CLICK HERE for more information.

 


More:

Duke Law Review:  Don’t ‘Screw Joe the Plummer’: The Sausage-Making of Financial Reform

An Expanded Study of School Bond Elections in Michigan

Gallery: School Bond Referenda

In terms of total spend, the US elementary and secondary school industry is about twice the size of the higher education industry according to IBISWorld. About $100 billion is in play every year for both (which we cover during our Ædificare colloquia); with higher education spending only half of what elementary and secondary school systems spend on facilities.

Note that some districts are including construction for faculty housing.

Our focus remains on applying global standard to create educational settlements that are safer, simpler, lower-cost and longer-lasting — not on the hurly-burly of local school bond elections.  We recommend consulting the coverage in American School & University for more detailed and more timely information.




An Expanded Study of School Bond Elections in Michigan

Gallery: School Bond Referenda

As of January 2022, there were a few municipalities in the United States that allowed non-citizens to vote in local elections, but no entire states. These municipalities included:

San Francisco, California: Non-citizens are allowed to vote in school board elections.
Chicago, Illinois: Non-citizens are allowed to vote in school board elections.
Takoma Park, Maryland: Non-citizens are allowed to vote in local elections.

It’s worth noting that these policies may change over time as local governments make decisions regarding voting rights. For the most up-to-date information, it’s best to consult the specific laws and regulations of each municipality or state.

"Election Day, 1944" | Norman Rockwell for the Saturday Evening Post

“Election Day, 1944” | Norman Rockwell for the Saturday Evening Post

School bond elections — either at county or district level — are processes through which communities vote to authorize the issuance of bonds to fund various projects and improvements in their local school districts.  The elections determine the quality of educational settlements –new school buildings, renovating existing facilities, upgrading technology, and improving safety measures. The outcomes of these elections directly affect the quality of education and learning environments for students within the county. Successful bond measures can stimulate economic growth by creating jobs and attracting families to the area.

Community involvement and voter turnout are essential in determining the allocation of resources and shaping the quality of life for its citizens.  In recent years, however, voter ambivalence about the education “industry” in general, the rise of home schooling and other cultural factors, complicate choices presented to voters.

Financial Services

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content