Tag Archives: D2

Loading
loading..

Grid-Connected Microgrid Battery Energy Storage Systems

 

 

 

 

 

 

 

 

 

 

 

 

 

Overview of Technical Specifications for Grid-Connected Microgrid Battery Energy Storage Systems

A. Rahman Khalid, et. al

Abstract:  Increasing distributed topology design implementations, uncertainties due to solar photovoltaic systems generation intermittencies, and decreasing battery costs, have shifted the direction towards integration of battery energy storage systems (BESSs) with photovoltaic systems to form renewable microgrids (MGs). Specific benefits include, but are not limited to, seamless switching and islanding operations during outages and ancillary grid services. The evolution of battery chemistries and other components has also further enhanced practicality; however, developing these multifaceted MGs involves complexity in the design process. Consequently, stakeholders rely on connection standards and operational requirements to guarantee reliable and safe grid-connected operations.

This paper presents a technical overview of battery system architecture variations, benchmark requirements, integration challenges, guidelines for BESS design and interconnection, grid codes and standards, power conversion topologies, and operational grid services. In addition, a comprehensive review of the control strategies for battery equalization, energy management systems, communication, control of multiple BESSs, as well as a discussion on protection blinding and intentional islanding using BESSs is also provided. Finally, a discussion of the islanded and black start operation results for time-based analysis and standard validation of a 3MW/9MWh BESS in a grid-connected MG at the Florida International University (FIU) Engineering Campus is presented.

Pathways 100

Today we break down the literature for exterior and interior pathways in education communities.   We limit the term “pathway” to refer to human pathways (as in egress and ingress paths); not wiring or piping pathways.   Maximum distance of travel from within a building and along an egress path toward safety is a core topic in building safety literature.  Starting 2023 we will break down coverage of subject catalogs and bibliographies:

Pathways 100: Survey of all titles for both the exterior and interior environments

Pathways 200: Review of codes, standards and guidelines for building interiors

Related recent research:

Hallways and stairways lighting system cost reduction

The research on circadian rhythm parameters testing of lighting quality in classrooms

Research and discussion on classroom blackboard lighting

Pathways 300: Review of codes, standards and guidelines campus environment outside the buildings; all seasons

Pathways 500: Review of noteworthy litigation.   Campus pathways are rich in possibilities for legal actions so we will refresh our understanding of the landmark decisions.

This breakdown is “somewhat” inspired by recent action by ASHRAE International to expand the scope of ASHRAE 90.1 to heating and cooling environments outside buildings.   The new title of ASHRAE 901. includes the word “Site”, which is another way of saying “the world” outside buildings.   Standards Michigan commented on the consequences of doing this in the proposal stages in 2020-2021.


The topic involves titles from many standards setting organizations; among them:

American National Standards Institute

C136-series for street lighting

International Code Council (accessible and useable ingress and egress entrances, paths and exits)

International Building Code: Chapter 10 Means of Egress

ICC A117 Accessibility Meeting Agenda December 15 2022 (Pathways)

ICC A117.1 2023 Meeting Calendar Accessible and Useable Buildings

Modifications for A117.1 12-1-2022 meeting

A117.1 11-17-2022 Agenda 20

A117.1 7-28-2022 Minutes 12

IFC §909.21.6 Proposal FS118-21 Pressurization systems for elevator pathways (now being discussed during the ICC Group A Committee Action Hearings in September)

American Society of Civil Engineers (roads, sidewalks)

American Society of Mechanical Engineers

ASME A17.1-2019: Safety Code for Elevators and Escalators

Elevators & Lifts

Institute of Electrical and Electronic Engineers (wayfinding along unofficial footpaths using the internet of small things)

Education & Healthcare Facility Electrotechnology

A BIM-Based Coordination Support System for Emergency Response

Computer Vision Method in Means of Egress Obstruction Detection

Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities

Wayfinding: Current Research

 

National Electrical Manufacturers Association

National Fire Protection Association (fire protection for interior premises, fire truck routes, electric signage, security)

2021 NFPA 101 Life Safety Code

Chapter 3 Means of Egress

Chapter 12-13 Assembly Occupancies

Chapter 14-15 Educational Occupancies

Chapter 18-19 Health Care Occupancies

2022 Standard for Emergency and Standby Power Systems

Chapter 5 – Emergency Power Supply: Energy Sources, Converters and Accessories

ASTM International Committee C09 on Concrete and Concrete Aggregates

Standard Terminology Relating to Concrete and Concrete Aggregates

…And about 20 others.

We might venture onto the minefield of sensitivities about signage: too much, too many, too big, too small?  There are signs everywhere in academia.

Many titles in the foregoing list are inspired by legal requirements of the Americans with Disabilities Act administered by the US Department of Justice

As usual, we’ll only have time to identify the titles and concepts in motion and set up a separate markup session.   Open to everyone; use the login credentials at the upper right of our home page.

Texas Tech


MORE:

International Building Code §3104 Pedestrian Walkways and Tunnels 

2023 National Electrical Code Article 420 — Luminaires, Lampholders, and Lamps

2023 National Electrical Code Article 600 – Electric Signs and Outline Lighting

2023 National Electrical Code Article 620 — Elevators, Dumbwaiters, Escalators, Moving Walks, Lifts and Chairlifts

Bibliography

Shaping the Sidewalk Experience

The 8 Principles of Sidewalks

Federal Highway Administration University Course on Bicycle and Pedestrian Transportation

“The Via Appia: A Case Study in the Political Geography of Imperialism” Hannah Friedman.  This article, published in the Journal of Historical Geography in 2011, examines the Appian Way as a product of Roman imperialism and a reflection of Roman attitudes toward the landscape and its inhabitants. The author draws on both textual and archaeological evidence to explore the road’s impact on the regions it passed through.

“The Appian Way: The Road that Built the Roman Empire” by Richard Talbert – Cambridge University Press 2012.  A a comprehensive study of the Appian Way and its significance to the Roman Empire. The author draws on a wide range of archaeological and historical evidence to explore the road’s construction, use, and legacy.

 

 

Children’s Hospital Neonatal Intensive Care

Some of the common electro-technologies used in a neonatal care unit include:

  • Incubators: These temperature-controlled units create a controlled environment to keep premature or sick infants warm and protected.
  • Ventilators: Mechanical ventilators assist newborns with respiratory distress by delivering oxygen and helping them breathe.
  • Monitors: These devices track vital signs such as heart rate, oxygen levels, blood pressure, and temperature to ensure the baby’s health and detect any abnormalities.
  • Phototherapy Lights: Special lights are used to treat jaundice in newborns, helping to break down excess bilirubin in the blood.
  • Intravenous Pumps: These pumps are used to deliver medications, fluids, and nutrients directly into the baby’s bloodstream.
  • Feeding Tubes: For infants who are unable to feed orally, feeding tubes are used to deliver breast milk or formula directly into their stomach.
  • Blood Gas Analyzers: These machines measure the levels of oxygen, carbon dioxide, and other gases in a baby’s blood to monitor respiratory status and acid-base balance.
  • Infusion Pumps: Used to administer controlled amounts of fluids, medications, or nutrients to newborns.
  • CPAP/BiPAP Machines: Continuous Positive Airway Pressure (CPAP) and Bi-level Positive Airway Pressure (BiPAP) machines help newborns with breathing difficulties by providing a continuous flow of air pressure.
  • Neonatal Resuscitation Equipment: This includes equipment such as resuscitation bags, endotracheal tubes, laryngoscopes, and suction devices used during emergency situations to assist with newborn resuscitation.

It’s important to note that specific tools and equipment may vary depending on the level of neonatal care provided by the unit, the needs of the infants, and the policies of the healthcare facility.

Neonatal care, as a specialized field, has been shaped by the contributions of several pioneers in medicine. Here are a few notable figures who have made significant advancements in neonatal care:

  • Dr. Virginia Apgar was an American obstetrical anesthesiologist who developed the Apgar score in 1952. The Apgar score is a quick assessment tool used to evaluate the overall health of newborns immediately after birth. It assesses the baby’s heart rate, respiratory effort, muscle tone, reflex irritability, and color, providing valuable information for prompt intervention and monitoring.
  • Dr. Martin Couney, a pioneering physician, established incubator exhibits at world fairs and amusement parks in the early 20th century. He promoted the use of incubators to care for premature infants and played a significant role in popularizing the concept of neonatal intensive care.
  • Dr. Virginia A. Apgar, an American pediatrician and neonatologist, made significant contributions to the field of neonatology. She specialized in the care of premature infants and conducted extensive research on neonatal resuscitation and newborn health. She also developed the Apgar scoring system, although unrelated to Dr. Virginia Apgar mentioned earlier.
  • Dr. Lula O. Lubchenco was an influential researcher and neonatologist who made important contributions to the understanding of newborn growth and development. She developed the Lubchenco Growth Chart, which provides a standardized assessment of a newborn’s size and gestational age, aiding in the identification and monitoring of growth abnormalities.
  • Dr. Mary Ellen Avery was a renowned American pediatrician and researcher whose work focused on understanding and treating respiratory distress syndrome (RDS) in premature infants. She identified the importance of surfactant deficiency in RDS and contributed to the development of surfactant replacement therapy, revolutionizing the care of preterm infants.

These individuals, among many others, have played pivotal roles in advancing the field of neonatal care, improving the understanding, diagnosis, treatment, and overall outcomes for newborn infants.

Healthcare Facilities Code

IEEE  Education & Healthcare Facility Electrotechnology

 

Healthcare Facilities Code

“The Doctor”  1891 Sir Luke Fildes

The NFPA 99 Healthcare Facilities Code committee develops a distinct consensus document (i.e. “regulatory product”) that is distinct from National Electrical Code Article 517; though there are overlaps and gaps that are the natural consequence of changing technology and regulations.  It is worthwhile reviewing the scope of each committee:

NFPA 99 Scope: This Committee shall have primary responsibility for documents that contain criteria for safeguarding patients and health care personnel in the delivery of health care services within health care facilities: a) from fire, explosion, electrical, and related hazards resulting either from the use of anesthetic agents, medical gas equipment, electrical apparatus, and high frequency electricity, or from internal or external incidents that disrupt normal patient care; b) from fire and explosion hazards; c) in connection with the use of hyperbaric and hypobaric facilities for medical purposes; d) through performance, maintenance and testing criteria for electrical systems, both normal and essential; and e) through performance, maintenance and testing, and installation criteria: (1) for vacuum systems for medical or surgical purposes, and (2) for medical gas systems; and f) through performance, maintenance and testing of plumbing, heating, cooling , and ventilating in health care facilities.

NFPA 70 Article 517 Scope:  The provisions of this article shall apply to electrical construction and installation criteria in healthcare facilities that provide services to human beings.  The requirements in Parts II and III not only apply to single-function buildings but are also intended to be individually applied to their respective forms of occupancy within a multi-function building (e.g. a doctor’s examining room located within a limited care facility would be required to meet the provisions of 517.10)   Informational Note: For information concerning performance, maintenance, and testing criteria, refer to the appropriate health care facilities documents.

In short, NFPA 70 Article 517 is intended to focus only on electrical safety issues though electrotechnology complexity and integration in healthcare settings (security, telecommunications, wireless medical devices, fire safety, environmental air control, etc.) usually results in conceptual overlap with other regulatory products such as NFPA 101 (Life Safety Code) and the International Building Code.

Several issues were recently debated by the Article 517 technical committee during the 2023 National Electrical Code Second Draft meetings

  • The conditions under which reconditioned electrical equipment be installed in healthcare settings; contingent on listing and re-certification specifics.
  • Relaxation of the design rules for feeder and branch circuit sizing through the application of demand factors.
  • Application of ground fault circuit interrupters.
  • “Rightsizing” feeder and branch circuit power chains (Demand factors in Section 517.22)
  • Patient care space categories
  • Independence of power sources (517.30)

There are, of course, many others, not the least of which involves emergency management.  For over 20 years our concern has been for the interdependency of water and electrical power supply to university hospitals given that many of them are part of district energy systems.

We need to “touch” this code at least once a month because of its interdependence on other consensus products by other standards developing organizations.  To do this we refer NFPA 99 standards action to the IEEE Education & Healthcare Facilities Committee which meets online four times monthly in European and American time zones.

The transcript of NEC Article 517 Public Input for the 2023 revision of NFPA 70 is linked below.  (You may have to register your interest by setting up a free-access account):

Code-Making Panel 15 (NEC-P15) Public Input Report

Code-Making Panel 15 (NEC-P15) Public Comment Report

Technical committees will meet in June to endorse the 2023 National Electrical Code.

Public consultation on the Second Draft closes May 31st. Landing page for selected sections of the 2024 revision  of NFPA 99 are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

Second Draft Comments are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

NITMAM closing date: March 28, 2023

We break down NFPA 70 and NFPA 99 together and keep them on the standing agenda of both our Power and Health colloquia; open to everyone.  See our CALENDAR for the next online meeting.

"The trained nurse has become one of the great blessings of humanity, taking a place beside the physician and the priest" - William Osler"While we try to teach our children all about life, our children teach us what life is all about" - Angela Schwindt "The true art of pediatrics lies not only in curing diseases but also in preventing them" - Abraham JacobiGermany

Issues: [12-18, [15-97] and [16-101]

Contact: Mike Anthony, Jim Harvey, Robert Arno, Josh Elvove, Joe DeRosier, Larry Spielvogel

NFPA Staff Liaison: Jonathan Hart

Archive / NFPA 99

 

 

 

K-12 School Security

CLICK ON IMAGE (Note that the link may move around quite a bit)

 

Clery Act

Solar (Winter)

Sie strahlt vor Freude über ihre Auszeichnung – TH-Alumna Melanie Klaus. Für ihre Bachelorarbeit im Bereich Erneuerbare Energien wurde sie vom Solarenergieförderverein Bayern geehrt. In ihrer Bachelorarbeit im Studiengang Elektro- und Informationstechnik untersuchte sie das Zusammenspiel von Wind- und Solarenergie und den Nutzen, der sich hieraus für die regenerative Energieerzeugung erzielen lässt. Untersucht wurde also die Nutzung der natürlichen Kombination von Wind und Sonne für die Energieerzeugung. Um die Rentabilität dieser Einspeisekombination zu ermitteln, hat Melanie Klaus ein Software-Tool entwickelt, welches zur Planung und Simulation abgestimmter Photovoltaik-Wind-Kombinationen dient und bereits für die Errichtung einer Photovoltaik-Anlage zu einem Windpark eingesetzt wird.

Starting 2023 we separated our coverage of solar energy standards from our standing Electrical and Energy colloquia and placed emphasis on seasonal life cycle returns.   We start with the following titles

IEC TC 82 Solar photovoltaic energy systems

Underwriters Laboratories 1703 PV Module Certification

ASTM E772 Standard Terminology of Solar Energy Conversion

IEEE 1562 Guide for Array and Battery Sizing in Stand-Alone Photovoltaic Systems

NEMA Solar Photovoltaic Council

NECA 412 Standard for Installing and Maintaining Photovoltaic Power Systems

NFPA 70 Articles 690-691

NFPA 70 Articles 705 & 855

International Code Council Section 1607 Photovoltaic panels or modules

ASHRAE International: 90.1 Building Energy Code & 189.1 Green Energy Code

Time permitting: Example design specification and construction contract.

"Education is simply the soul of a society as it passes from one generation to another" - G.K. Chesterton

Other standards developers and publishers are also present in this domain but this list is where we will start given that we only have an hour.   Join us today at 16:00 with the login credentials at the upper right of our home page.

Readings:

What are the hidden costs of solar panels?

Do We Have Enough Silver, Copper, And Other Materials To Keep Up With The Growth Of Solar?

Mining Raw Materials for Solar Panels: Problems and Solutions

Grid-Connected Microgrid Battery Energy Storage Systems

Claude

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

A Procedure to Estimate the Energy Requirements for Lighting

 

A Procedure to Estimate the Energy Requirements for Lighting

Giuseppe Parise – Luigi Martirano – Luigi Parise

Sapienza, University of Rome

Abstract:  The amount of the electrical energy used for the interior lighting of medium and large buildings is generally considerable. The European Standard EN15193 was devised to establish conventions and procedures for the estimation of energy requirements of lighting in buildings by an energy performance numeric indicator. This methodology is based on the three derating factors that consider the influence of the daylight exploitation, the occupancy behavior and, if present, of a constant illuminance sensor. The factors are evaluated by a statistical approach on the basis of general reference data tabulated by the same Standard, not considering more detailed parameters of the control system that can impact severely in the effective energy savings. The Standard methodology appears extremely useful for a preliminary evaluation. For a more accurate evaluation, this paper suggests an improvement of the procedure that considers the effective operation time and occupancy behavior, the type of control and lamps, the number of control groups, the technique of modulation (dimming or switching), and the delay in turning off. The suggested procedure is compared with the Standard one to highlight the improvements.

CLICK HERE to order complete paper

Related:

Energy performance of interior lighting systems

Energy performance of buildings: An useful procedure to estimate the impact of the lighting control systems

Topology of Continuous Availability for LED Lighting Systems

Interoperability of Distributed Energy Resources

IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems is effectively the global standard for interconnection of distributed resources with large scale electric power systems.  It provides requirements relevant to the performance, operation, testing, safety, and maintenance of the interconnection.  Apart from the power reliability and sustainability zietgeist we have seen in campus bulk power distribution systems, this title is usually referenced in research projects undertaken in university research enterprises.  The standard is intended to be universally adoptable, technology-neutral, and cover distributed resources as large 10 MVA.  To wit:

IEEE 1547-2018 Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces: This standard — emerging from IEEE Root Project 1547.3 — 2007 asserts first principles for improved performance for distributed energy resources, connected to the grid. NIST funding aided this standard’s development.   Links to related titles, recently released for public consultation, are listed below:

P1547.2/D6.5, August 2023 – IEEE Approved Draft Application Guide for IEEE Std 1547™, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems

1547.3 Guide for Cybersecurity of DER Interconnected with Electric Power Systems | Comments due May 27

Guide to Using IEEE Standard 1547 for Interconnection of Energy Storage Distributed Energy Resources | Comments Due May 6th

We collaborate with the IEEE Education & Healthcare Facilities Committee on this an related titles.   This committee’s meetings are held 4 times monthly in European and American time zones.  International Electrical Technical Commission titles are items on the standing agenda; a few representative titles are listed in addition to IEEE titles below:

IEC 62746-10-1:2018 Systems Interface Between Customer Energy Management System and the Power Management System – Part 10-1: Open Automated Demand Response: This standard specifies how to implement a two-way signaling system, between utilities and customers, thus allowing utilities to adjust the grid’s load, based on demand. NIST’s David Holmberg and Steve Bushby presented research to the International Electrotechnical Commission (IEC), aiding this US standard’s acceptance as an international one.

IEC 62746-10-3:2018, Systems Interface Between Customer Energy Management System and the Power Management System – Part 10-3: Open Automated Demand Response – Adapting Smart Grid User Interfaces to the IEC Common Information Model: Related to the previous standard, IEC 62746-10-3:2018 defines the interfaces, as well as, the messaging for this two-way signaling system. NIST’s Holmberg and Bushby also facilitated this international standard’s acceptance.

IEEE 21451-001-2017 Recommended Practice for Signal Treatment Applied to Smart Transducers: This guide supports the ability to uniformly processing and classifying data from sensors and actuators in a smart system. The standard enables a common interpretation of data and grid interoperability. NIST personnel served on this standard’s working group, providing NIST research on sensors and actuators.

IEEE 2030.7-2017 Standard for the Specification of Microgrid Controllers: This standard established requirements for controllers, used to sense and manage microgrids. These requirements inform the manufacturing of controllers, and ultimately enable grid interoperability. NIST funding aided this standard’s development.

IEEE 2030.8 Standard for Testing Microgrid Controllers: This testing standard helps verify that microgrid controllers meet these requirements, and, thus, will work as intended. NIST funding aided this standard’s development.

IEEE 1547-2018 Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces: This standard ushers in a new era of improved performance for distributed energy resources, connected to the grid. NIST funding aided this standard’s development.

To inform a United States position on IEC titles we follow the lead of the USNA/IEC whose activity we also track in the IEEE E&H Committee

Issue: [11-17]

Category: Electric, Energy

Colleagues: Mike Anthony, Bob Arno, Neal Dowling, Peter Sutherland

Standards Coordinating Committee Membership

Microgrids

 

Wires

Ampere current flows through copper or aluminum conductor due to the movement of free electrons in response to an applied electric field of varying voltages.   Each copper or aluminum contributes one free electron to the electron sea, creating a vast reservoir of mobile charge carriers. When a potential difference (voltage) is applied across the ends of the conductor, an electric field is established within the conductor. This field exerts a force on the free electrons, causing them to move in the direction of the electric field.  The resulting current flow can be transformed into different forms depending on the nature of the device.

Heating: When current flows through a resistor, it encounters resistance, which causes the resistor to heat up. This is the principle behind electric heaters, toasters, and incandescent light bulbs.

Mechanical Work: Current flowing through an electric motor creates a magnetic field, which interacts with the magnetic field of the motor’s permanent magnets or electromagnets. This interaction generates a mechanical force, causing the motor to rotate. Thus, electrical energy is converted into mechanical energy; including sound.

Light: In an incandescent light bulb, a filament heats up ( a quantum phenomena) due to the current passing through it. This is an example of electrical energy being converted into light energy; including the chemical energy through light emitting diodes

Today we dwell on how conductors are specified and installed in building premise wiring systems primarily; with some attention to paths designed to carry current flowing through unwanted paths (ground faults, phase imbalance, etc).   In the time we have we will review the present state of the best practice literature developed by the organizations listed below:

International Electrotechnical Commission

60304 Low voltage installations: Protection against electric shock

Institute of Electrical and Electronic Engineers

National Electrical Safety Code

Insulated Cable Engineers Association

International Association of Electrical Inspectors

National Fire Protection Association

National Electrical Code

Code Making Panel 6

Transcript of CMP-6 Proposals for 2026 NEC

Other organizations such as the National Electrical Manufacturers Association, ASTM International, Underwriter Laboratories, also set product and installation standards.  Data center wiring; fiber-optic and low-voltage control wiring is covered in other colloquia (e.g. Infotech and Security) and coordinated with the IEEE Education & Healthcare Facilities Committee.

Use the login credentials at the upper right of our home page.


Related:

2017 National Electrical Code § 110.5

Neher-McGrath Calculation: Cable Calculation ampacity and Thermal Analysis

ETAP: Cabling Sizing – Cable Thermal Analysis

 

System Aspects of Electrical Energy

Impedance Grounding for Electric Grid Surviability

Electric Power Availability: Cold Weather Preparedness

Architecture of power systems: Special cases

Outdoor Deicing & Snow Melting

Campus Outdoor Lighting

High Voltage Electric Service

Campus Bulk Electrical Distribution

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content