Tag Archives: D3

Loading
loading..
archive

print (“Hello World!”)

Data Points (2023 Estimates for 193 countable nations):

Global Gross Domestic Product (GGDP) ~ $106.17T

Anglosphere (United States, United Kingdom, Canada, Australia, New Zealand) ~ $31T (or ~32% of GGDP)

United States GDP $27T (or about 1/3rd of GGDP)

 

“Livres des Merveilles du Monde” 1300 | Marco Polo | Bodleian Libraries, University of Oxford

Today we break down consultations on titles relevant to the technology and management of the real assets of education communities in the United States specifically; but with sensitivity to the global education markets where thousands of like-minded organizations also provide credentialing, instruction, research, a home for local fine arts and sport.

We steer away from broad policy issues and steer toward technical specifics of public consultations presented by national member bodies of the International Electrotechnical Commission, the International Organization for Standardization, the International Telecommunications Union and the American National Standards Institute.  If there is a likelihood that the titles published by these workgroups will be incorporated by reference into public safety or sustainability legislation; or integrated into the cost structure of education communities in any other way, we will listen carefully and contribute meaningfully where we can.

Vienna Convention on Diplomatic Relations | 1961 

 
“Even apart from the instability due to speculation, there is the instability due to the characteristic of human nature that a large proportion of our positive activities depend on spontaneous optimism rather than on a mathematical expectation, whether moral or hedonistic or economic. Most, probably, of our decisions to do something positive, the full consequences of which will be drawn out over many days to come, can only be taken as the result of animal spirits — a spontaneous urge to action rather than inaction, and not as the outcome of a weighted average of quantitative benefits multiplied by quantitative probabilities. Enterprise only pretends to itself to be mainly actuated by the statements in its own prospectus, however candid and sincere that prospectus may be. Only a little more than an expedition to the South Pole is it based on an exact calculation of benefits to come. Thus if the animal spirits are dimmed and the spontaneous optimism falters, leaving us to depend on nothing but a mathematical expectation, enterprise will fade and die; — though fears of loss may have a basis no more reasonable than hopes of profit had before.”

“The General Theory of Employment, Interest, and Money” 

— John Maynard Keynes, 1936

International Standard Classification of Education

American National Standards Institute

World Standards Week 2023

Setting the standard: Grange members can be voice of rural users in standardization system

ISO/IEC/ITU coordination – Listing of New Work Items (New: Passwords Required)

New ANSI Education Initiative Supports the Next Generation of Standardization Leaders

International Code Council

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE (3/17/2023)

International Zoning Code

International Electrotechnical Commission

International Electrotechnical Commission | CDV Consultations

IEC Open Consultations: 20 December

USNC/IEC  Current Winter 2023

IEC 87th General Meeting | Cairo, 22 – 26 October

Results from IEC General Assembly 2022 | San Francisco

Going All-Electric

Extended Versions  Certain standards are required to be read in tandem with another standard, which is known as a reference (or parent) document. The extended version (EXV) of an IEC Standard facilitates the user to be able to consult both IEC standards simultaneously in a single, easy-to-use document.

Elettrotecnico Lingua Franca

International Telecommunications Union

The case for standardizing homomorphic encryption

Outcomes of the ITU Plenipotentiary Conference

World Radiocommunication Conference

International Standardization Organization

How ISO codes connect the world

New partnership for ISO and ICC

Must-have skills for the green economy

Building Environment Design

A partial list of projects with which we have been engaged as an active participant; starting with the original University of Michigan enterprise in the late 1990’s and related collaborations with IEEE and others: (In BOLD font we identify committees with open consultations requiring a response from US stakeholders before next month’s Hello World! colloquium)

IEC/TC 8, et al System aspects of electrical energy supply

IEC/TC 22 Power electronic systems and equipment

IEC/TC 34 Lighting

IEC/TC 62 Electrical equipment in medical practice

IEC/TC 64 Electrical installations and protection against electric shock

IEC/TC 82 Solar photovoltaic energy systems

IEC/SYC Electrotechnical Aspects of Smart Cities

SyC Smart Energy


Standards Michigan Workspace for IEC/ITU Consultations


ISO/IEC JTC 1 Information Technology, et. al

ISO/TC 205 Building environmental design

ISO/TC 215 Health Informatics

ISO/TC 229 Nanotechnologies

ISO/TC 232 Education and Learning Services

ISO/TC 251 Asset Management

ISO/TC 260 Human Resource Management

ISO/TC 267 Facility Management

ISO/TC 268 Sustainable cities and communities

ISO/TC 274 Light and Lighting

ISO/TC 276 Biotechnology

ISO/TC 301 Energy management and energy savings

ISO/TC 304 Healthcare organization management

ISO/TC 336 Laboratory Design

We collaborate with the appropriate ANSI US TAG; or others elsewhere in academia.   We have begun tracking ITU titles with special attention to ITU Radio Communication Sector.

main( ) {
        printf("hello, world\n");
}

We have collaborations with Rijksuniversiteit Groningen, Sapienza – Università di Roma, Universität Zürich, Universität Potsdam, Université de Toulouse. Universidade Federal de Itajubá, University of Windsor, the University of Alberta, to name a few — most of whom collaborate with us on electrotechnology issues.  Standards Michigan and its 50-state affiliates are (obviously) domiciled in the United States.  However, and for most issues, we defer to the International Standards expertise at the American National Standards Institute

ANSI INTERACTIVE MAP: INTERNATIONAL TRADE & DEVELOPMENT

Use the login credentials at the upper right of our home page.

 

 

These three regions make up 50% of world GDP

 

More

Data Point: Global Construction Market is Expected to Reach $11 trillion by 2031

General Public Participation in ANSI ISO Activities

March 2021 edition of the TMB Communiqué.

ISO/IEC Directives, Part 1

ISO/IEC Directives, Part 1, Consolidated ISO Supplement

International Electrotechnical Commission Annual Report 2019

ISO Update  2021-02-09

ANSI Education & Training Overview

ANSI Guide for US Delegates

ITU Digital Technical Standards


* A “Hello, World!” program generally is a computer program that outputs or displays the message “Hello, World!”. Such a program is very simple in most programming languages (such as Python and Javascript) and is often used to illustrate the basic syntax of a programming language. It is often the first program written by people learning to code. It can also be used as a sanity test to make sure that a computer language is correctly installed, and that the operator understands how to use it.

 

Freely Available ICT Standards

United States Technical Advisory Group Administrator: INCITS

TC 64 Electrical installations and protection against electric shock

“Le Lac Léman ou Près d’Evian au lac de Genève” 1883 François BocionISO and IEC Joint Technical Committee 1  is the work center for international information and communications technology (ICT) standards that are relevant to education communities.  In accordance with ISO/IEC JTC 1 and the ISO and IEC Councils, some International Standards and other deliverables are made freely available for standardization purposes.

Freely Available International Standards

We at least follow action, and sometimes contribute data and user-interest perspective, to the development of standards produced by several ANSI-accredited ICT standard developing organizations — ATIS, BICSI, IEEE, INCITS, TIA among them.  US-based organizations may communicate directly with Lisa Rajchel, ANSI’s ISO/IEC JTC 1 Senior Director for this project: lrajchel@ansi.org.  Our colleagues at other educational organizations should contact their national standards body.

We scan the status of Infotech and Cloud standards periodically and collaborate with a number of IEEE Societies.  See our CALENDAR for the next online meeting; open to everyone.

More

The ISO/IEC Joint Technical Committee for Information Technology (JTC 1)

ISO/IEC JTC 1/SC 36 Information technology for learning, education and training

ISO/IEC JTC 1/SC 32 Data management and interchange

Canadian Parliament Debate on Standards Incorporated by Reference

“The Jack Pine” | Tom Thomson (1916) | National Gallery of Canada

 

Originally posted January 2014

In these clips — selected from Canadian Parliamentary debate in 2013 — we observe three points of view about Incorporation by reference (IBR); a legislative drafting technique that is the act of including a second document within a main document by referencing the second document.

This technique makes an entire second (or referenced) document a part of the main document.  The consensus documents in which we advocate #TotalCostofOwnership concepts are incorporated by reference into legislation dealing with safety and sustainability at all levels of government.  This practice — which many consider a public-private partnership — is a more effective way of driving best practices for technology, and the management of technology, into regulated industries.

Parent legislation — such as the Higher Education Act of 1965, the Clean Air Act and the Energy Policy Act – almost always require intermediary bureaucracies to administer the specifics required to accomplish the broad goals of the legislation.  With the gathering pace of governments everywhere expanding their influence over larger parts of the technologies at the foundation of national economies; business and technology standards are needed to secure that influence.  These standards require competency in the application of political, technical and financial concepts; competencies that can only be afforded by incumbent interests who build the cost of their advocacy into the price of the product or service they sell to our industry.  Arguably, the expansion of government is a reflection of the success of incumbents in business and technical standards; particularly in the compliance and conformity industries.

About two years ago, the US debate on incorporation by reference has been taken to a new level with the recent statement released by the American Bar Association (ABA):

16-164-Incorporation-by-Reference-ABA-Resolution-and-Report

The American National Standards Institute responded to the ABA with a statement of its own.

16-164-ANSI-Response-to-ABA-IBR-06-16 (1)

The incorporation by reference policy dilemma has profound implications for how we safely and economically design, operate and maintain our “cities-within-cities” in a sustainable manner but, admittedly, the results are only visible in hindsight over a time horizon that often exceed the tenure of a typical college or university president.

A recent development — supporting the claims of ANSI and its accredited standards developers — is noteworthy:

The National Institute for Standards and Technology (NIST) manages a website — Standards.GOV — that is a single access point for consensus standards incorporated by reference into the Code of Federal Regulations: Standards Incorporated by Reference Database.   Note that this database does not include specific reference to safety and sustainability codes which are developed by standards setting organizations (such as NFPA, ICC, IEEE, ASHRAE and others) and usually incorporated by reference into individual state public safety and technology legislation.


LEARN MORE:

 

Fenestration

The oldest door still in use in Pantheon (115 A.D.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“No work of art can be great,

if it is not composed of the smallest things.”

Vitruvius  (Book VII, Chapter 9)

 

Today during our usual hour we sweep through standards action in building glazing, entrances and means of egress.  The word fenestration (Latin: fenestra) has become a term of art for the design, construction, and placement of openings in a building, including windows, doors, skylights, and other glazed elements.  While the word has sparse use in the International Code Council and National Fire Protection Association catalog it is widely used by the Construction Specifications Institute in its MasterFormat system for organizing construction standards, guidelines and building contracts.

The percentage of a building envelope “skin” that is comprised of doors and windows varies depending on the specific building design, function, and location. However, a commonly cited range is between 15% to 25% of the total building envelope.  The actual percentage will depend on several factors such as the building’s purpose, orientation, local climate, and energy performance goals. Buildings that require more natural light or ventilation, such as schools, hospitals, and offices, may have a higher percentage of windows and doors in their envelope. In contrast, buildings with lower lighting and ventilation requirements, such as warehouses, may have a smaller percentage of windows and doors.

Fenestration presents elevated risk to facility managers.  The education facility industry is a large target and a pattern of settling out of court.   For example:

  • In 2013, a former student at Yale University sued the school over a broken window in her dorm room. The student alleged that the university was negligent in failing to repair the window, which allowed a burglar to enter her room and sexually assault her. The case was settled out of court in 2015 for an undisclosed amount.
  • In 2019, a student at the University of California, Los Angeles sued the school over a broken window in her apartment. The student alleged that the university was negligent in failing to repair the window, which allowed a swarm of bees to enter her apartment and sting her. The case was settled out of court for $4.5 million.
  • In 2020, a group of students at Harvard University sued the school over its decision to require them to move out of their dorms due to the COVID-19 pandemic. The students alleged that the university breached its contract with them by failing to provide suitable alternative housing, including functioning windows and doors.  (The case is ongoing; best we can tell as of the date of this post).

These cases illustrate that colleges and universities can face legal action related to doors and windows, either due to alleged negligence in maintaining or repairing them, or due to issues related to student housing and accommodations.

Our inquiry breaks down into two modules at the moment:

Exterior facing fenestration

Interior window walls and doors

Join us online at the usual time.

door (n.)

University of Arkansas at Little Rock

Related:

Means of Egress

Life Safety Code

Rijksuniversiteit Groningen

Code ignis MMXXVII

Winter Holiday Fire Facts

NFPA Fire Protection Systems Catalog (Lorem ipsum)

Crosswalk: NFPA Fire Code and ICC International Fire Code

“Prometheus creating Man in the presence of Athena” 1802 Jean-Simon Berthélemy

Free public access to the current edition of NFPA’s parent fire safety document is linked below:

2024 NFPA 1 Fire Code 

We attend to occupancy-specific chapters (listed below) because of their significant presence in education communities.

Chapter 25: Grandstands and Bleachers, Folding and Telescopic Seating, Tents and Membrane Structures (N.B)

Chapter 26: Laboratories Using Chemicals

Chapter 29: Parking Garages

Chapter 32: Motion Picture and Television Production Studio Soundstages and Approved Production Facilities

Chapter 35: Animal Housing Facilities

Chapter 36: Telecommunication Facilities and Information Technology Equipment

Chapter 50: Commercial Cooking

Chapter 52: Energy Storage Systems

Some of the chapters reference other titles such as NFPA 45 Standard of Fire Protection for Laboratories Using Chemicals which support risk management in other occupancies.  It is noteworthy that in the 2021 revision cycle of NFPA 1 there are relatively few new concepts regarding education facilities that have been proposed.   You get a sampling of the ideas in play from the transcript of public input for the 2024 edition.

Public Input Report (525 Pages)

Use search terms such as school, college, university, dormitory(ies), laboratory(ies), classroom, children, day-care, student, et cetera for a sense of the ideas in play.

Results of the 2027 First Draft meetings have not yet been posted as on November 9, 2024.  A preview of the ideas in play can be found in the meeting minutes of the several committees linked below:

Fire Code (FCC-AAC): First Draft Meeting Minutes

First Draft: Fundamentals of the Fire Code (FCC-FUN)

Special Equipment, Processes and Hazardous Materials (FCC-HAZ)

Building Systems and Special Occupancies (FCC-OCP)

Public comment on the First Draft of the 2027 revision will be received until April 24, 2025.

We include NFPA 1 on our periodic fire safety colloquia — identified by the mnemonic Prometheus — and march along peak interests.

Campus fire safety is domain relatively well-covered by other organizations such as the Center for Campus Fire Safety and HigherEd Safety so we place NFPA 1 in the middle of our priority tier.   We are more interested in the harmonization of NFPA 1 with a competitor title International Fire Code; published by the International Code Council; to wit:

International Fire Code:   The purpose of this code is to establish the minimum requirements consistent with nationally recognized good practice for proving a reasonable level of life safety and property protection from the hazards of fire, explosion or dangerous conditions in new and existing buildings, structures or premises and to provide a reasonable level of safety to fire fighters and emergency responders during emergency operations

Fire Code: The scope includes, but is not limited to, the following: (1) Inspection of permanent and temporary buildings, processes, equipment, systems, and other fire and related life safety situations (2) Investigation of fires, explosions, hazardous materials incidents, and other related emergency incidents (3) Review of construction plans, drawings, and specifications for life safety systems, fire protection systems, access, water supplies, processes, hazardous materials, and other fire and life safety issues (4) Fire and life safety education of fire brigades, employees, responsible parties, and the general public (5) Existing occupancies and conditions, the design and construction of new buildings, remodeling of existing buildings, and additions to existing buildings (6) Design, installation, alteration, modification, construction, maintenance, repairs, servicing, and testing of fire protection systems and equipment (7) Installation, use, storage, and handling of medical gas systems (8) Access requirements for fire department operations (9) Hazards from outside fires in vegetation, trash, building debris, and other materials (10) Regulation and control of special events including, but not limited to, assemblage of people, exhibits, trade shows, amusement parks, haunted houses, outdoor events, and other similar special temporary and permanent occupancies (11) Interior finish, decorations, furnishings, and other combustibles that contribute to fire spread, fire load, and smoke production (12) Storage, use, processing, handling, and on-site transportation of flammable and combustible gases, liquids, and solids (13) Storage, use, processing, handling, and on-site transportation of hazardous materials (14) Control of emergency operations and scenes (15) Conditions affecting fire fighter safety (16) Arrangement, design, construction, and alteration of new and existing means of egress

Note that both ICC and NFPA parent fire safety documents are developed on coincident 3-year cycles.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony,  Joshua W. Elvove, Joe DeRosier, Casey Grant

System Aspects of Electrical Energy

IEC technical committees and subcommittees Ω SMB Tabulation

IEC and ITU offices | Geneva

Much economic activity in the global standards system involves products — not interoperability standards. Getting everything to work together — safely, cost effectively and simpler — is our raison d’etre.  

Manufacturers, testing laboratories, conformance authorities (whom we call vertical incumbents) are able to finance the cost of their advocacy — salaries, travel, lobbying, administration — into the cost of the product they sell to the end user (in our cases, estate managers in educational settlements).  To present products — most of which involve direct contact with a consumer — at a point of sale it must have a product certification label.  Not so with systems.  System certification requirements, if any, may originate in local public safety requirements; sometimes reaching into the occupational safety domain.

Our readings of the intent of this technical committee is to discover and promulgate best practice for “systems of products” — i.e. ideally interoperability characteristics throughout the full span of the system life cycle.

To quote Thomas Sowell:

“There are no absolute solutions to human problems, there are only tradeoffs.”  

Many problems have no solutions, only trade-offs in matters of degree.  We explain our lament over wicked problems in our About.

 

IEC technical committees and subcommittees


LEARN MORE:

 

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. - Nikola Tesla


ARCHIVE

The United States National Committee of  the International Electrotechnical Commission (USNA/IEC) seeks participants and an ANSI Technical Advisory Group (US TAG) Administrator for an IEC subcommittee (Multi-Agent System) developing standards for power system network management.   From the project prospectus:

Standardization in the field of network management in interconnected electric power systems with different time horizons including design, planning, market integration, operation and control.  SC 8C covers issues such as resilience, reliability, security, stability in transmission-level networks (generally with voltage 100kV or above) and also the impact of distribution level resources on the interconnected power system, e.g. conventional or aggregated Demand Side Resources (DSR) procured from markets.

SC 8C develops normative deliverables/guidelines/technical reports such as:

– Terms and definitions in area of network management,
– Guidelines for network design, planning, operation, control, and market integration
– Contingency criteria, classification, countermeasures, and controller response, as a basis of technical requirements for reliability, adequacy, security, stability and resilience analysis,
– Functional and technical requirements for network operation management systems, stability control systems, etc.
– Technical profiling of reserve products from DSRs for effective market integration.
– Technical requirements of wide-area operation, such as balancing reserve sharing, emergency power wheeling.

Individuals who are interested in becoming a participant or the TAG Administrator for SC 8C: Network Management are invited to contact Adelana Gladstein at agladstein@ansi.org as soon as possible.

This opportunity, dealing with the system aspects of electrical energy supply (IEC TC 8), should at least interest electrical engineering research faculty and students involved in power security issues.   Participation would not only provide students with a front-row seat in power system integration but faculty can collaborate and compete (for research money) from the platform TC 8 administers.  We will refer it to the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones.

Current Projects

We track action in the catalog of this consortia standards developer because we continually seek ways to avoid spending a dollar to save a dime; characteristic of an industry that is a culture more than it is a business.

 

While not an ANSI accredited the FASB/GASB standards setting enterprise’s due process requirements (balance, open-ness, appeal, etc.)* are “ANSI-like” and widely referenced in education enterprise management best practice.  Recent action in its best practice bibliography is listed below

ACCOUNTING STANDARDS UPDATES ISSUED

For obvious reasons, we have an interest in its titles relevant to Not-For-Profit Entities

WHAT IS THE FASB NOT-FOR-PROFIT ENTITY TEAM


At present the non-profit titles are stable with the 2020 revision.  That does not mean there is not work than can be done.  Faculty and students may be interested in the FASG program linked below:

Academics in Standard Setting

Also, the “Accounting for Environmental Credit Programs”, last updated in January, may interest colleges and universities with energy and sustainability curricula.  You may track progress at the link below:

EXPOSURE DOCUMENTS OPEN FOR COMMENT

The Battle about Money

We encourage our colleagues to communicate directly with the FASB on any issue (Click here).   Other titles in the FASB/GASB best practice bibliography are a standing item on our Finance colloquia; open to everyone.  Use the login credentials at the upper right of our home page.

 

Issue: [15-190]

Category: Finance, Administration & Management, Facility Asset Management

Colleagues: Mike Anthony, Jack Janveja, Richard Robben


Workspace / FASB GASB

Carnegie Classifications

The Carnegie Classification of Institutions of Higher Education, or simply the Carnegie Classification, is the framework for classifying colleges and universities in the United States. Created in 1970, it is named after and was originally created by the Carnegie Foundation for the Advancement of Teaching, but responsibility for the Carnegie Classification was transferred to Indiana University‘s Center for Postsecondary Research, in 2014.

The framework primarily serves educational and research purposes, where it is often important to identify groups of roughly comparable institutions. The classification includes all accredited, degree-granting colleges and universities in the United States that are represented in the National Center for Education Statistics Integrated Postsecondary Education Data System.

The Carnegie Classification of Institutions of Higher Education ®

Mechanical 330

Today’s Handout: Radon, et al (For future dedicated session)

During today’s colloquium we audit the literature that sets the standard of care for mechanical engineering design, construction operations and maintenance of campus district energy systems — typically miles (kilometers) of large underground pipes and wires that characterize a district energy system.  Topically, Mechanical 400 deals with energy systems “outside” or “between” buildings; whereas Mechanical 200 deals with energy systems within an individual building envelope.

2024 International Mechanical Code

Mechanical Engineering Courses

A campus district energy system is a centralized heating and cooling network that supplies thermal energy to multiple buildings within a defined area, such as a college or university campus. The system generates steam, hot water, or chilled water at a central plant, which is then distributed through an underground network of pipes to individual buildings for space heating, domestic hot water, and air conditioning. By consolidating energy production and distribution, campus district energy systems can achieve significant energy and cost savings compared to individual building systems, as well as reduce greenhouse gas emissions and improve reliability and resiliency of the energy supply.

"I've always been interested in building systems that can understand and respond to natural language. It's one of the most challenging and fascinating problems in AI" - Stephen Wolfram"The golden rule of elevator safety states 'Its either you're in or out'" - Facilities Management

School Construction News (September 24) | Arizona State University: Helping Higher Ed: Solutions to Advance Sustainability Goals in Campus Mechanical Systems

We track standards setting in the bibliographies of the following organizations:

AHRI | Air Conditioning, Heating & Refrigeration Institute

ASHRAE | American Society of Heating & Refrigeration Engineers

ASHRAE Guideline 14: Measurement of Energy and Demand Savings

ASHRAE Guideline 22: Instrumentation for Monitoring Central Chilled Water Plant Efficiency

Facility Smart Grid Information Model

ASME | American Society of Mechanical Engineers

ASPE | American Association of Plumbing Engineers

ASTM | American Society for Testing & Materials

AWWA | American Water Works Association

AHRI | Air Conditioning, Heating & Refrigeration Institute

IAPMO | International Association of Plumbing and Mechanical Officials

IEC | International Electrotechnical Commission

Institute of Electric and Electronic Engineers

Research on the Implementation Path Analysis of Typical District Energy Internet

Expansion Co-Planning of Integrated Electricity-Heat-Gas Networks in District Energy Systems

Towards a Software Infrastructure for District Energy Management

 

IMC | International Mechanical Code

IDEA | International District Energy Association

District Energy Best Practices Handbook

District Energy Assessment Tool

IPC | International Plumbing Code

ISEA | International Safety Equipment Association

NFPA | National Fire Protection Association

SMACNA | Sheet Metal Contractors National Association

UL | Underwriters Laboratories

UpTime Institute

(All relevant OSHA Standards)

It is a large domain and virtually none of the organizations listed above deal with district energy systems outside their own (market-making) circle of influence.  As best we can we try to pull together the peak priorities for the real asset managers and engineers who are responsible for these system.

* Building services engineers are responsible for the design, installation, operation and monitoring of the technical services in buildings (including mechanical, electrical and public health systems, also known as MEP or HVAC), in order to ensure the safe, comfortable and environmentally friendly operation. Building services engineers work closely with other construction professionals such as architects, structural engineers and quantity surveyors. Building services engineers influence the architectural design of building, in particular facades, in relation to energy efficiency and indoor environment, and can integrate local energy production (e.g. façade-integrated photovoltaics) or community-scale energy facilities (e.g. district heating). Building services engineers therefore play an important role in the design and operation of energy-efficient buildings (including green buildings, passive houses and zero energybuildings.  uses. With buildings accounting for about a third of all carbon emissions] and over a half of the global electricity demand, building services engineers play an important role in the move to a low-carbon society, hence mitigate global warming.


More:

Practical Essay on the Stength of Cast Iron and Other Metals  Thomas Tredgold (1882)

Dutch Institute for Fundamental Energy Research

Eurocodes

CLICK ON IMAGE TO LAUNCH INTERACTIVE MAP

The Eurocodes are ten European standards (EN; harmonised technical rules) specifying how structural design should be conducted within the European Union. These were developed by the European Committee for Standardization upon the request of the European Commission.  The purpose of the Eurocodes is to provide:

  • A means to prove compliance with the requirements for mechanical strength and stability and safety in case of fire established by European Union law.[2]
  • A basis for construction and engineering contract specifications.
  • A framework for creating harmonized technical specifications for building products (CE mark).

Since March 2010 the Eurocodes are mandatory for the specification of European public works and are intended to become the de facto standard for the private sector. The Eurocodes therefore replace the existing national building codes published by national standard bodies, although many countries have had a period of co-existence. Additionally, each country is expected to issue a National Annex to the Eurocodes which will need referencing for a particular country (e.g. The UK National Annex). At present, take-up of Eurocodes is slow on private sector projects and existing national codes are still widely used by engineers.

Eurocodes appear routinely on the standing agendas of several of our daily colloquia, among them the AEDificare, Elevator & Lift and Hello World! colloquia.    See our CALENDAR for the next online meeting; open to everyone.


More

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

Building Environment Design

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content