Pedestrian bollards protect walkways from vehicle intrusion, guide foot traffic, snow plows and can provide heating and illumination. They should be positioned in front of energy utility services (such as natural gas and electrical power switchgear). at sidewalk entrances, crosswalks, and near pedestrian-heavy zones. Join us today at 16:00 UTC when we examine best practice literature and a few construction details as time allows.
International & General Standards
ASTM F3016 – Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds.
ASTM F2656 – Standard Test Method for Crash Testing of Vehicle Security Barriers.
ASTM A53 / A500 – Standards for steel pipe and tubing used in bollard construction.
ISO 22343 – Vehicle security barrier standards.
U.S. Codes & Regulations
ADA Standards for Accessible Design – Ensures bollards do not create accessibility barriers.
IBC (International Building Code) – Covers structural requirements for bollards in buildings.
*After the Roman period, Bath remained a small town until the 18th century, when it became a fashionable spa destination for the wealthy. The architect John Wood the Elder designed much of the city’s Georgian architecture, including the famous Royal Crescent and the Circus. Bath also played an important role in the English literary scene, as several famous authors, including Jane Austen, lived and wrote in the city. During the 19th century, Bath’s popularity declined as other spa towns became fashionable. In the 20th century, the city experienced significant redevelopment and preservation efforts, including the restoration of its Roman baths and the construction of a new spa complex.
Today, Bath is a UNESCO World Heritage Site and a popular tourist destination known for its historical and cultural significance.
In the United States, land surveying is regulated by various professional organizations and government agencies, and there are several technical standards that must be followed to ensure accuracy and consistency in land surveying.
The best practice for land surveying is set by the “Manual of Surveying Instructions” published by an administrative division of the United States Department of the Interior responsible for managing public lands in the United States. The manual provides detailed guidance on the procedures and techniques for conducting various types of land surveys, including public land surveys, mineral surveys, and cadastral surveys.
Another important set of model standards for land surveying is the Minimum Standards for Property Boundary Surveys* published by the National Society of Professional Surveyors. These standards provide guidance on the procedures and techniques for conducting property boundary surveys, including the use of appropriate surveying equipment, the preparation of surveying maps and plats, and the documentation of surveying results. Land surveyors in the United States are also required to adhere to state and local laws and regulations governing land surveying, as well as ethical standards established by professional organizations such as the American Society of Civil Engineers.
The Morrill Land-Grant Act of 1862 granted each state 30,000 acres of federal land for each member of Congress from that state to establish colleges that would teach agriculture, engineering, and military tactics. This legislation led to the establishment of many public universities, including the Texas A&M University, the University of Wisconsin and Michigan State University.
An inglenook is an intimate space typically found beside a fireplace. Inglenooks often have built-in seating or benches, providing a comfortable spot for people to gather around the warmth of the fire. Originally inspired by cooking, but over time, they became more functional as spaces for relaxation, reflection, reading and socializing.
Today at the usual hour we examine that state of best practice literature for their safety and sustainability,
The codes, standards and guidelines that track accepted best practice:
ASME
ASME B31.9 – Building Services Piping
ASME B31.8 – Gas Transmission and Distribution Piping Systems
ASTM
ASTM E2726 – Standard Terminology Relating to Chimneys and Ventilation Systems
ASTM E2558 – Standard Test Method for Determining Particulate Matter Emissions from Fires in Wood-Burning Fireplaces
Abstract: One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.
Harvard University Dormitory Room | Smithsonian Museum | Thomas Warren Sears Collection
Today we break down public consultation notices for literature that sets the standard of care for the safety and sustainability of student housing in K-12 prep schools, colleges and universities. We deal with off-campus housing in a separate session because it involves local safety and sustainability regulations; most of which are derived from residential housing codes and standards.
Like any other classification of real property the average cost for room and board for a public university student dormitory depends on several factors such as the location of the university, the type of dormitory, and the meal plan options. According to the College Board, the average cost of room and board for the 2021-2022 academic year at a public four-year in-state institution was $11,620. However, this figure can range from around $7,000 to $16,000 or more depending on the specific institution and its location. It’s important to note that this average cost only includes the basic meal plan and standard dormitory room. Students may also have additional costs for a larger or more luxurious dorm room, a premium meal plan, or other expenses such as laundry or parking fees.
According to ring Rider Levett Bucknall, a global property and construction consultancy firm, the average construction cost for a student housing facility in the United States in 2021 was around $202 per square foot. However, this figure can range from around $150 to $300 per square foot or more depending on the specific project. Life cycle cost for new facilities with tricked out net-zero gadgets is hard to come by at the moment.
Because money flows freely through this domain we examine scalable densities and the nature of money flow patterns; partially tracked by the Electronic Municipal Market Access always on the standing agenda of our Finance colloquium.
Here are a few pros and cons of private sector construction of university-owned student housing:
Pros:
Increased housing availability: Private sector developers may be able to build more student housing units than a university could build on its own, which can help to alleviate the shortage of on-campus housing for students.
Faster construction: Private developers may be able to complete construction projects faster than universities, which can help to reduce the amount of time that students must wait for new housing options.
Reduced financial burden on the university: The cost of building and maintaining student housing can be significant, and private sector developers may be willing to bear some of these costs. This can help to reduce the financial burden on the university and free up resources for other initiatives.
Professional management: Private developers may have more experience managing large housing projects and may be able to provide more professional management services than a university could provide on its own.
Cons:
Higher costs for students: Private developers may charge higher rents than a university would charge for student housing, which can make housing less affordable for some students.
Reduced university control: Private developers may have different priorities than a university would have when it comes to building and managing student housing. This can lead to a reduced level of control for the university over housing quality, management, and policies.
Potential conflicts of interest: Private developers may be more focused on making a profit than on meeting the needs of students or the university, which can create potential conflicts of interest.
Less transparency: Private developers may not be subject to the same level of transparency and accountability as a university would be when it comes to housing policies, decision-making processes, and financial management.
It’s important to note that these pros and cons may vary depending on the specific circumstances and context of each individual university and private sector partnership.
Today we amble through the literature providing policy templates informing school district, college and university-affiliated transportation and parking facilities and systems. Starting 2024 we will break up our coverage thus:
Mobility 100 (Survey of both ground and air transportation instructional and research facilities)
Mobility 400 (Reserved for zoning, parking space allocation and enforcement, and issues related to one of the most troublesome conditions in educational settlements)
Today’s session will be the last when we cover both land and air transportation codes, standards, guidelines and the regulations that depend upon all them. We will break out space and aerospace mobility into a separate session — largely because many universities are tooling up square footage and facilities in anticipation of research grants.
Like many SDO’s the SAE makes it very easy to purchase a standard but makes it very difficulty to find a draft standard open for public review. It is not an open process; one must apply to comment on a draft standard. Moreover, its programmers persist in playing “keep away” with landing pages.
The public school bus system in the United States is the largest public transit system in the United States. According to the American School Bus Council, approximately 25 million students in the United States ride school buses to and from school each day, which is more than twice the number of passengers that use all other forms of public transportation combined.
The school bus system is considered a public transit system because it is operated by public schools and school districts, and provides a form of transportation that is funded by taxpayers and available to the general public. The school bus system also plays a critical role in ensuring that students have access to education, particularly in rural and low-income areas where transportation options may be limited.
National Association of State Directors of Pupil Transportation Services
National School Transportation Association
School Bus Manufacturers Association
…and 50-state spinoffs of the foregoing. (See our ABOUT for further discussion of education industry non-profit associations)
There are several ad hoc consortia in this domain also; which include plug-in hybrid electric vehicles. Charging specifications are at least temporarily “stable”; though who should pay for the charging infrastructure in the long run is a debate we have tracked for several revision cycles in building and fire codes.
Because incumbents are leading the electromobility transformation, and incumbents have deep pockets for market-making despite the “jankiness” of the US power grid, we can track some (not all) legislation action, and prospective public comment opportunities. For example:
Keep in mind that even though proposed legislation is sun-setted in a previous (116th) Congress, the concepts may be carried forward into the following Congress (117th).
Public consultations on mobility technologies relevant to the education facility industry are also covered by the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.
This topic is growing rapidly and it may well be that we will have to break it up into more manageable pieces. For the moment, today’s colloquium is open to everyone. Use the login credentials at the upper right of our home page.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T