Tag Archives: D4

Loading
loading..

Higher Education Laboratories

2024 GROUP A PROPOSED CHANGES TO THE I-CODES: Complete Monograph (2658 pages)

Note the following changes in the transcript above:

Section 702 (Rated Construction), FS44-24 Installer Qualifications (typical marketmaking), Section 3801 (Materials exceeding the Maximum Allowable Quantity), F59-24 (Battery Containment Areas), F81-24 (Health Care Facility Plugs), F112-24 (Lithium Ion Battery Labs), F197-24 (Market making, laboratory oven protection study), F235-24 (Hazardous Materials Classifications & quantity limits).

These are a few representative proposals we will examine ahead of the July 8th deadline.


Safety and sustainability concepts for research and healthcare delivery cut across many disciplines and standards suites and provides significant revenue for most research universities.  The International Code Council provides free access to current editions of its catalog of titles incorporated by reference into public safety law.  CLICK HERE for an interactive edition of Chapter 38 of the 2021 International Fire Code.

During today’s colloquium we will examine consultations for the next edition in the link below:

2021 International Fire Code Chapter 38 Higher Education Laboratories

We encourage our colleagues to participate directly in the ICC Code Development process.   The next revision of the International Fire Code will be undertaken accordingly to next ICC Code Development schedule; the timetable linked below:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage directly employed front-line staff of a school district, college or university that does not operate in a conformance/compliance capacity — for example, a facility manager of an academic unit — to join a committee.  Not the Fire Marshall.  Not the Occupational Safety Inspector.  Persons with job titles listed below:

  • Fire Safety System Designer
  • Fire Alarm Technician (Shop Foreman)
  • Building Commissioner
  • Electrical, Mechanical Engineer
  • Occupational Safety Engineer

These subject matter experts generally have a user-interest point of view.

Contact Kimberly Paarlberg (kpaarlberg@iccsafe.org) for information about how to do so.

 

Related:

 2021 International Mechanical Code

2021 International Plumbing Code

2021 International Energy Conservation Code

Issue 16-69

Category: Fire Safety, Facility Asset Management

Colleagues: Joe DeRosier, Josh Elvove, Mark Schaufele

Archive / Higher Education Laboratories

Meeting Point

Danse de recherche sur le cancer

Fire Protection for Laboratories Using Chemicals

Because of the robustness of the environmental safety units in academia we place this title in the middle of our stack of priorities. Laboratory safety units are generally very well financed because of the significance of the revenue stream they produce.  We place higher priority on standby power systems to the equipment and, in many cases, the subjects (frequently animals)

Chemical laboratory, Paris. 1760

 

We were advocating #TotalCostofOwnership concepts in this document before our work was interrupted by the October 2016 reorganization (See ABOUT).   Some of that work was lost so it may be wise to simply start fresh again, ahead of today’s monthly teleconference on laboratory safety codes and standards.  The scope of NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals is very large and articulated so we direct you to its home page.

Suffice to say that the conditions under which NFPA 45 may be applied is present in many schools, colleges and universities — both for instructional as well as academic research purposes.  Some areas of interest:

  • Laboratory Unit Hazard Classification
  • Laboratory Unit Design and Construction
  • Laboratory Ventilating Systems and Hood Requirements
  • Educational and Instructional Laboratory Operations

We find considerable interaction with consensus documents produced by the ICC, ASHRAE and NSF International.

It is noteworthy that there are many user-interest technical committee members on this committee from the State University of New York, the University of Kentucky, West Virginia University, the University of Texas, University of California Berkeley and the University of Texas San Antonio; thereby making it one of only a few ANSI accredited standards with a strong user-interest voice from the education.  Most of them are conformance/inspection interest — i.e. less interested in cost reduction — but they are present nonetheless.  We pick our battles.

The 2023 revision is in an advanced stage of development and on the agenda of the June 2023 Technical Standards Agenda.  It will likely be approved for release to the public later this year.

We always encourage direct participation.  You may communicate directly with Sarah Caldwell or Laura Moreno at the National Fire Protection Association, One Batterymarch Park, Quincy, MA 02169-7471 United States.  TEL: 1 800 344-3555 (U.S. & Canada); +1 617 770-3000 (International)

This standard is on the standing agenda of our periodic Laboratory standards teleconference.  See our CALENDAR for the next online meeting; open to anyone.

Issue: [19-60]

Category: Prometheus, Laboratory, Risk

Colleagues: Richard Robben, Mark Schaufele

 

Top Deck View

University of Bath: Department of Estates

BSI Group Standards Catalog

BSI Group Standards Catalog

*After the Roman period, Bath remained a small town until the 18th century, when it became a fashionable spa destination for the wealthy. The architect John Wood the Elder designed much of the city’s Georgian architecture, including the famous Royal Crescent and the Circus. Bath also played an important role in the English literary scene, as several famous authors, including Jane Austen, lived and wrote in the city.   During the 19th century, Bath’s popularity declined as other spa towns became fashionable. In the 20th century, the city experienced significant redevelopment and preservation efforts, including the restoration of its Roman baths and the construction of a new spa complex.

Today, Bath is a UNESCO World Heritage Site and a popular tourist destination known for its historical and cultural significance.

Standards für die Präanalytik

Laboratory Chemical Safety Fixtures

Electrical Safety in Academic Laboratories

Nikola Tesla, with his equipment / Credit: Wellcome Library, London

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Risk managers, electrical safety inspectors, facility managers and others are welcomed to click into those teleconferences also.  We expect that concepts and recommendations this paper will find their way into future revisions of US and international electrical safety codes and standards.  There is nothing stopping education facility managers from applying the findings immediately.

College of Engineering and Technology, Bhubaneswar India


Electrical Safety of Academic Laboratories | 2019-PSEC-0204

Presented at the 55th IEEE Industrial Applications Society I&CPS Technical Conference | Calgary, Alberta Canada | May 6-9, 2019

Ω

Rodolfo Araneo, University of Rome “La Sapienza” | rodolfo.araneo@ieee.org

Payman Dehghanian, George Washington University | payman@gwu.edu

Massimo Mitolo, Irvine Valley College | mitolo@ieee.org

 

Abstract. Academic laboratories should be a safe environment in which one can teach, learn, and conduct research. Sharing a common principle, the prevention of potential accidents and imminent injuries is a fundamental goal of laboratory environments. In addition, academic laboratories are attributed the exceptional responsibility to instill in students the culture of the safety, the basis of risk assessment, and of the exemplification of the prudent practice around energized objects.  Undergraduate laboratory assignments may normally be framed based upon the repetition of established experiments and procedures, whereas, academic research laboratories may involve new methodologies and/or apparatus, for which the hazards may not be completely known to the faculty and student researchers. Yet, the academic laboratory should be an environment free of electrical hazards for both routine experiments and research endeavors, and faculty should offer practical inputs and safety-driven insights to academic administration to achieve such a paramount objective. In this paper, the authors discuss the challenges to the electrical safety in modern academic laboratories, where users may be exposed to harmful touch voltages.

I. INTRODUCTION

A. Electricity and Human Vulnerabilities

B. Electrical Hazards in Academic Laboratories

II. ELECTRICAL SEPARATION

III. SAFETY IN ACADEMIC LABORATORIES WITH VARIABLE FREQUENCY DRIVES

IV. ELECTRICAL SAFETY IN ACADEMIC LIGHTING LABORATORIES

V. ACADEMIC RESEARCH LABORATORIES

A. Basic Rules of Engagement

B. Unidirectional Impulse Currents

VI. HAZARDS IN LABORATORIES DUE TO ELECTROMAGNETIC FIELD EXPOSURE

VII. WARNING SIGNS AND PSYCHOLOGICAL PERCEPTION OF DANGER

VIII. CONCLUSION

Safety is the most important practice in an academic laboratory as “safety and productivity are on the same team”.  Electrical measurement and electrically-powered equipment of various brands and models are common in both teaching and research laboratories, highlighting the need to maintaining them continuously in an electrically-safe status.  Annual reports on the occurrence of electrical hazards (i.e. shocks and injuries) in academic laboratory environments primarily discover the (i) lack of knowledge on using the electrical equipment, (ii) careless use of the energized electric facilities, and (iii) faulty electrical equipment or cords. The above does call for the establishment of safety-driven codes, instructions, and trainings for the academic personnel working with or near such devices for teaching, learning, experiments, and research. This paper provided background information on the concept of electrical safety in the academic laboratories, presented the safety challenges of modern academic laboratories, and offered solutions on how enhance the lab environment and research personnel safety awareness to avoid and control electrical hazards.

Issue: [19-129]

Category: Electrical, Facility Asset Management, Fire Safety, International

Colleagues: Mike Anthony, Rodolfo Araneo, Payman Dehghanian, Jim Harvey, Massimo Mitolo, Joe Tedesco

Related IEEE Research:

Laboratory Safety and Ethics

Strengthening and Upgrading of Laboratory Safety Management Based on Computer Risk Identification

Study on the Operators’ Attention of Different Areas in University Laboratories Based on Eye Movement Tracking Technology

Critical Study on the feasiblity of Smart Laboratory Coats

Design of Safety Monitoring System for Electrical Laboratory in Colleges and Universities under the Background of Informatization

Clean Environment Tools Design For Smart Campus Laboratory Through a Global Pandemic

Design of Laboratory Fire Safety Monitoring System


Land Measurement

In the United States, land surveying is regulated by various professional organizations and government agencies, and there are several technical standards that must be followed to ensure accuracy and consistency in land surveying.

The best practice for land surveying is set by the “Manual of Surveying Instructions” published by an administrative division of the United States Department of the Interior responsible for managing public lands in the United States. The manual provides detailed guidance on the procedures and techniques for conducting various types of land surveys, including public land surveys, mineral surveys, and cadastral surveys.

George Washington, Surveyor of Western Virginia

Manual of Surveying Instructions

Another important set of model standards for land surveying is the Minimum Standards for Property Boundary Surveys* published by the National Society of Professional Surveyors. These standards provide guidance on the procedures and techniques for conducting property boundary surveys, including the use of appropriate surveying equipment, the preparation of surveying maps and plats, and the documentation of surveying results.   Land surveyors in the United States are also required to adhere to state and local laws and regulations governing land surveying, as well as ethical standards established by professional organizations such as the American Society of Civil Engineers.


* Local variants

California: Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys

Michigan: Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys

 

The Morrill Land-Grant Act of 1862 granted each state 30,000 acres of federal land for each member of Congress from that state to establish colleges that would teach agriculture, engineering, and military tactics. This legislation led to the establishment of many public universities, including the Texas A&M University, the University of Wisconsin and Michigan State University.

International Zoning Code

International Zoning Code

ANSI Standards Action: February 2, 2024

National Association of County Engineers

The purpose of the code is to establish minimum requirements to provide a reasonable level of health, safety, property protection and welfare by controlling the design, location, use or occupancy of all buildings and structures through the regulated and orderly development of land and land uses within this jurisdiction.

CLICK IMAGE

Municipalities usually have specific land use or zoning considerations to accommodate the unique needs and characteristics of college towns:

  1. Mixed-Use Zoning: Cities with colleges and universities often employ mixed-use zoning strategies to encourage a vibrant and diverse urban environment. This zoning approach allows for a combination of residential, commercial, and institutional uses within the same area, fostering a sense of community and facilitating interactions between students, faculty, and residents.
  2. Height and Density Restrictions: Due to the presence of educational institutions, cities may have specific regulations on building height and density to ensure compatibility with the surrounding neighborhoods and maintain the character of the area. These restrictions help balance the need for development with the preservation of the existing urban fabric.
  3. Student Housing: Cities with colleges and universities may have regulations or guidelines for student housing to ensure an adequate supply of affordable and safe accommodations for students. This can
    include requirements for minimum bedroom sizes, occupancy limits, and proximity to campus.
  4. Parking and Transportation: Given the concentration of students, faculty, and staff, parking and transportation considerations are crucial. Cities may require educational institutions to provide parking facilities or implement transportation demand management strategies, such as promoting public transit use, cycling infrastructure, and pedestrian-friendly designs.
  5. Community Engagement: Some cities encourage colleges and universities to engage with the local community through formalized agreements or community benefit plans. These may include commitments to support local businesses, contribute to neighborhood improvement projects, or provide educational and cultural resources to residents.

This is a relatively new title in the International Code Council catalog; revised every three years in the Group B tranche of titles.  Search on character strings such as “zoning” in the link below reveals the ideas that ran through the current revision:

Complete Monograph: 2022 Proposed Changes to Group B I-Codes (1971 pages)

We maintain it on our periodic I-Codes colloquia, open to everyone.  Revision proposals for the 2026 revision will be received until January 10, 2025.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We maintain it on our periodic I-Codes colloquia, open to everyone with the login credentials at the upper right of our home page.

The City Rises (La città che sale) | 1910 Umberto Boccioni


Related:

Signs, Signs, Signs

  1. Reed v. Town of Gilbert (2015): This Supreme Court case involved a challenge to the town of Gilbert, Arizona’s sign code, which regulated the size, location, and duration of signs based on their content. The court held that the sign code was a content-based restriction on speech and therefore subject to strict scrutiny.
  2. City of Ladue v. Gilleo (1994): In this Supreme Court case, the court struck down a municipal ordinance that banned the display of signs on residential property, except for signs that fell within specific exemptions. The court held that the ban was an unconstitutional restriction on the freedom of speech.
  3. Metromedia, Inc. v. San Diego (1981): This Supreme Court case involved a challenge to a San Diego ordinance that banned off-premises advertising signs while allowing on-premises signs. The court held that the ordinance was an unconstitutional restriction on free speech, as it discriminated against certain types of speech.
  4. City of Ladue v. Center for the Study of Responsive Law, Inc. (1980): In this Supreme Court case, the court upheld a municipal ordinance that prohibited the display of signs on public property, but only if the signs were posted for longer than 10 days. The court held that the ordinance was a valid time, place, and manner restriction on speech.
  5. City of Boerne v. Flores (1997): This Supreme Court case involved a challenge to a municipal sign code that regulated the size, location, and content of signs in the city. The court held that the sign code violated the Religious Freedom Restoration Act, as it burdened the exercise of religion without a compelling government interest.

 

Fast & Ultra-Fast Charging for Battery Electric Vehicles

IEC Sustainable mobility systems

IEEE Spectrum | 4 December 2022

Fast and Ultra-Fast Charging for Battery Electric Vehicles – A Review

Camilo Suarez – Wilmar Martinez
Department of Electrical Engineering KU Leuven — EnergyVille, Belgium
Ω
Abstract: This paper intends to establish an overall up-to-date review on Fast Charging methods for Battery Electric Vehicles (BEV). This study starts from basic concepts involving single battery cell charging, current and future charging standards. Then, some popular power converter topologies employed for this application are introduced, and finally a summary of the industrial solutions available on the market are presented, as well as the ongoing projects related to the extreme fast charging (XFC) network expansion. Practical insights, considering the current BEV scenario, are employed to get a better understanding of this topic. Special attention is given to the modular design approach, analyzing its advantages and some of the factors that influence the number and size of modules that conform a fast charger solution.
CLICK HERE for complete paper

Personal e-Transporters

Redivivus

Today we pick through the literature for best practice in recycling enterprises in education communities.  We have been keeping pace with the evolution of regulations in this domain for over 15 years now.  Much like the security zietgeist the number of organizations involved in standards setting and conformance will likely surprise you.  It is a cross cutting topic with a growing body of expert agencies claiming some part of the domain.

We will also pick through a few representative legislative proposals.   Use the login credentials at the upper right of our home page.

Art Wall from Recycled Materials 2017 Barbara Rucci

Cloud based smart recycling bin for waste classification

Research on recycling of industrial waste

Smart Recycling Machine to collect the wasted Non-woven Fabric Face Mask

Curriculum for Effective Recycling

Readings / Evaluating Water-Damaged Electrical Equipment


*May 10, 2021

We have been keeping pace with the evolution of regulations in this domain for over 15 years now.  Hydra-like growth in policy think tanks and standards-developing organizations expanding into this domain will likely surprise you.  For example, in no particular order:

College and University Recycling Association

NSF International Joint Committee on Environmental Leadership Standard for Servers

Sustainability Leadership for Photovoltaic Modules

Reconditioned Electrical Equipment

Sustainable Electronics Recycling International

Environmental Protection Agency: Land, Waste, and Cleanup Topics

As in other domains, the private standards system competes with government “influencers” and incumbent proxies who make markets through legislation.

Specific requirements must be met for recycling to be economically feasible and environmentally effective. These include an adequate source of recyclates, a system to extract those recyclates from the waste stream, a nearby factory capable of reprocessing the recyclates, and a potential demand for the recycled products. These last two requirements are often overlooked—without both an industrial market for production using the collected materials and a consumer market for the manufactured goods, recycling is incomplete and in fact only “collection”.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content