Tag Archives: D4

Loading
loading..

Student Accommodation

ENR (December 7, 2023) University of Michigan Signs P3 for $631M Student Housing Project

Harvard University Dormitory Room | Smithsonian Museum | Thomas Warren Sears Collection

Today we break down public consultation notices for literature that sets the standard of care for the safety and sustainability of student housing in K-12 prep schools, colleges and universities.  We deal with off-campus housing in a separate session because it involves local safety and sustainability regulations; most of which are derived from residential housing codes and standards.

Monograph: The Case for Campus Housing

Off-Campus Housing

The topic cuts across many disciplines and standards setting organization bibliographies. We usually set our bearing with the following titles:

2021 International Building Code: Section 310 Residential Group R-2 + related titles such as the IFC, IMC, IPC, IECC

2021 Fire Code: Chapter 6 Classification of Occupancy  + related titles such as NFPA 70B, NFPA 72 and NFPA 110

2023 National Electrical Code: Articles 210-230 + related Articles 110 and 410

ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings: Annex G

Like any other classification of real property the average cost for room and board for a public university student dormitory depends on several factors such as the location of the university, the type of dormitory, and the meal plan options.  According to the College Board, the average cost of room and board for the 2021-2022 academic year at a public four-year in-state institution was $11,620. However, this figure can range from around $7,000 to $16,000 or more depending on the specific institution and its location.   It’s important to note that this average cost only includes the basic meal plan and standard dormitory room. Students may also have additional costs for a larger or more luxurious dorm room, a premium meal plan, or other expenses such as laundry or parking fees.   

According to ring Rider Levett Bucknall, a global property and construction consultancy firm, the average construction cost for a student housing facility in the United States in 2021 was around $202 per square foot. However, this figure can range from around $150 to $300 per square foot or more depending on the specific project.  Life cycle cost for new facilities with tricked out net-zero gadgets is hard to come by at the moment.

Because money flows freely through this domain we examine scalable densities and the nature of money flow patterns; partially tracked by the Electronic Municipal Market Access always on the standing agenda of our Finance colloquium.

More

National Institute of Standards & Technology: The Character of Residential Cooktop Fires

Deserted College Dorms Sow Trouble for $14 Billion in Muni Bonds

Dormitory, Fraternity, Sorority and Barrack Structure Fires

Here are a few pros and cons of private sector construction of university-owned student housing:

Pros:

  1. Increased housing availability: Private sector developers may be able to build more student housing units than a university could build on its own, which can help to alleviate the shortage of on-campus housing for students.
  2. Faster construction: Private developers may be able to complete construction projects faster than universities, which can help to reduce the amount of time that students must wait for new housing options.
  3. Reduced financial burden on the university: The cost of building and maintaining student housing can be significant, and private sector developers may be willing to bear some of these costs. This can help to reduce the financial burden on the university and free up resources for other initiatives.
  4. Professional management: Private developers may have more experience managing large housing projects and may be able to provide more professional management services than a university could provide on its own.

Cons:

  1. Higher costs for students: Private developers may charge higher rents than a university would charge for student housing, which can make housing less affordable for some students.
  2. Reduced university control: Private developers may have different priorities than a university would have when it comes to building and managing student housing. This can lead to a reduced level of control for the university over housing quality, management, and policies.
  3. Potential conflicts of interest: Private developers may be more focused on making a profit than on meeting the needs of students or the university, which can create potential conflicts of interest.
  4. Less transparency: Private developers may not be subject to the same level of transparency and accountability as a university would be when it comes to housing policies, decision-making processes, and financial management.

It’s important to note that these pros and cons may vary depending on the specific circumstances and context of each individual university and private sector partnership.


Gallery: Off-Campus Accommodation

Campus Rail Transit

The West Virginia University PRT (Personal Rapid Transit) system is a unique and innovative form of public transportation that serves the WVU campus and the city of Morgantown, West Virginia. The PRT system consists of a series of automated, driverless vehicles that operate on an elevated track network, providing fast and convenient transportation to key destinations on and around the WVU campus.

The PRT system was first developed in the 1970s as a solution to the growing traffic congestion and parking demand on the WVU campus. The system was designed to be efficient, reliable, and environmentally friendly, and to provide a high-tech, futuristic mode of transportation that would appeal to students and visitors.

The PRT system currently operates five different stations, with stops at key campus locations such as the Mountainlair Student Union, the Engineering Research Building, and the Health Sciences Center. The system is free for all WVU students, faculty, and staff, and also offers a low-cost fare for members of the general public.

The PRT system has been recognized as one of the most advanced and innovative public transportation systems in the world, and has won numerous awards for its design, efficiency, and environmental sustainability. It has also become an iconic symbol of the WVU campus, and is often featured in promotional materials and advertising campaigns for the university.

Standards West Virginia

More

Federal Transit Administration

West Virginia Department of Education: School Transportation

“Evaluation of the West Virginia University Personal Rapid Transit System” | A. Katz and A. Finkelstein (Journal of Transportation Engineering, 1987) This paper evaluates the technical and operational performance of the WVU PRT system based on data collected over a six-year period. The authors identify several issues with the system, including maintenance problems, limited capacity, and difficulties with vehicle docking and undocking.

“Modeling of the West Virginia University Personal Rapid Transit System” by J. Schroeder and C. Wilson (Transportation Research Record, 2002) This paper presents a mathematical model of the WVU PRT system that can be used to analyze its performance and identify potential improvements. The authors use the model to evaluate the impact of various factors, such as station dwell time and vehicle capacity, on the system’s overall performance.

“Evaluating the Effectiveness of Personal Rapid Transit: A Case Study of the West Virginia University System” by K. Fitzpatrick, M. Montufar, and K. Schreffler (Journal of Transportation Technologies, 2013) This paper analyzes the effectiveness of the WVU PRT system based on a survey of users and non-users. The authors identify several challenges facing the system, including low ridership, reliability issues, and high operating costs.

Association for Commuter Transportation: Accreditation Standards

 

Higher Education Laboratories

2024 GROUP A PROPOSED CHANGES TO THE I-CODES: Complete Monograph (2658 pages)

Note the following changes in the transcript above:

Section 702 (Rated Construction), FS44-24 Installer Qualifications (typical marketmaking), Section 3801 (Materials exceeding the Maximum Allowable Quantity), F59-24 (Battery Containment Areas), F81-24 (Health Care Facility Plugs), F112-24 (Lithium Ion Battery Labs), F197-24 (Market making, laboratory oven protection study), F235-24 (Hazardous Materials Classifications & quantity limits).


Safety and sustainability concepts for research and healthcare delivery cut across many disciplines and standards suites and provides significant revenue for most research universities.  The International Code Council provides free access to current editions of its catalog of titles incorporated by reference into public safety law.  CLICK HERE for an interactive edition of Chapter 38 of the 2021 International Fire Code.

During today’s colloquium we will examine consultations for the next edition in the link below:

2021 International Fire Code Chapter 38 Higher Education Laboratories

We encourage our colleagues to participate directly in the ICC Code Development process.   The next revision of the International Fire Code will be undertaken accordingly to next ICC Code Development schedule; the timetable linked below:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage directly employed front-line staff of a school district, college or university that does not operate in a conformance/compliance capacity — for example, a facility manager of an academic unit — to join a committee.  Not the Fire Marshall.  Not the Occupational Safety Inspector.  Persons with job titles listed below:

  • Fire Safety System Designer
  • Fire Alarm Technician (Shop Foreman)
  • Building Commissioner
  • Electrical, Mechanical Engineer
  • Occupational Safety Engineer

These subject matter experts generally have a user-interest point of view.

Contact Kimberly Paarlberg ([email protected]) for information about how to do so.

 

Related:

 2021 International Mechanical Code

2021 International Plumbing Code

2021 International Energy Conservation Code

Issue 16-69

Category: Fire Safety, Facility Asset Management

Colleagues: Joe DeRosier, Josh Elvove, Mark Schaufele

Archive / Higher Education Laboratories

Meeting Point

Danse de recherche sur le cancer

Electrical Safety in Academic Laboratories

Nikola Tesla, with his equipment / Credit: Wellcome Library, London

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Risk managers, electrical safety inspectors, facility managers and others are welcomed to click into those teleconferences also.  We expect that concepts and recommendations this paper will find their way into future revisions of US and international electrical safety codes and standards.  There is nothing stopping education facility managers from applying the findings immediately.

College of Engineering and Technology, Bhubaneswar India


Electrical Safety of Academic Laboratories | 2019-PSEC-0204

Presented at the 55th IEEE Industrial Applications Society I&CPS Technical Conference | Calgary, Alberta Canada | May 6-9, 2019

Ω

Rodolfo Araneo, University of Rome “La Sapienza” | [email protected]

Payman Dehghanian, George Washington University | [email protected]

Massimo Mitolo, Irvine Valley College | [email protected]

 

Abstract. Academic laboratories should be a safe environment in which one can teach, learn, and conduct research. Sharing a common principle, the prevention of potential accidents and imminent injuries is a fundamental goal of laboratory environments. In addition, academic laboratories are attributed the exceptional responsibility to instill in students the culture of the safety, the basis of risk assessment, and of the exemplification of the prudent practice around energized objects.  Undergraduate laboratory assignments may normally be framed based upon the repetition of established experiments and procedures, whereas, academic research laboratories may involve new methodologies and/or apparatus, for which the hazards may not be completely known to the faculty and student researchers. Yet, the academic laboratory should be an environment free of electrical hazards for both routine experiments and research endeavors, and faculty should offer practical inputs and safety-driven insights to academic administration to achieve such a paramount objective. In this paper, the authors discuss the challenges to the electrical safety in modern academic laboratories, where users may be exposed to harmful touch voltages.

I. INTRODUCTION

A. Electricity and Human Vulnerabilities

B. Electrical Hazards in Academic Laboratories

II. ELECTRICAL SEPARATION

III. SAFETY IN ACADEMIC LABORATORIES WITH VARIABLE FREQUENCY DRIVES

IV. ELECTRICAL SAFETY IN ACADEMIC LIGHTING LABORATORIES

V. ACADEMIC RESEARCH LABORATORIES

A. Basic Rules of Engagement

B. Unidirectional Impulse Currents

VI. HAZARDS IN LABORATORIES DUE TO ELECTROMAGNETIC FIELD EXPOSURE

VII. WARNING SIGNS AND PSYCHOLOGICAL PERCEPTION OF DANGER

VIII. CONCLUSION

Safety is the most important practice in an academic laboratory as “safety and productivity are on the same team”.  Electrical measurement and electrically-powered equipment of various brands and models are common in both teaching and research laboratories, highlighting the need to maintaining them continuously in an electrically-safe status.  Annual reports on the occurrence of electrical hazards (i.e. shocks and injuries) in academic laboratory environments primarily discover the (i) lack of knowledge on using the electrical equipment, (ii) careless use of the energized electric facilities, and (iii) faulty electrical equipment or cords. The above does call for the establishment of safety-driven codes, instructions, and trainings for the academic personnel working with or near such devices for teaching, learning, experiments, and research. This paper provided background information on the concept of electrical safety in the academic laboratories, presented the safety challenges of modern academic laboratories, and offered solutions on how enhance the lab environment and research personnel safety awareness to avoid and control electrical hazards.

Issue: [19-129]

Category: Electrical, Facility Asset Management, Fire Safety, International

Colleagues: Mike Anthony, Rodolfo Araneo, Payman Dehghanian, Jim Harvey, Massimo Mitolo, Joe Tedesco

Related IEEE Research:

Laboratory Safety and Ethics

Strengthening and Upgrading of Laboratory Safety Management Based on Computer Risk Identification

Study on the Operators’ Attention of Different Areas in University Laboratories Based on Eye Movement Tracking Technology

Critical Study on the feasiblity of Smart Laboratory Coats

Design of Safety Monitoring System for Electrical Laboratory in Colleges and Universities under the Background of Informatization

Clean Environment Tools Design For Smart Campus Laboratory Through a Global Pandemic

Design of Laboratory Fire Safety Monitoring System


Off-Campus Housing

Brigham Young University Idaho is a private university located in Rexburg, Idaho, United States. It is owned and operated by The Church of Jesus Christ of Latter-day Saints and is a part of the Church Educational System which recognizes moral absolutes at the foundation of a federal democratic republic that makes their university possible.  It offers a variety of undergraduate degrees in fields such as business, education, health, and the humanities. The university also offers online courses and programs for distance learners.

One unique aspect of BYU-Idaho is its emphasis on the integration of faith and learning. All students, regardless of their religious background, are required to take religion courses as part of their degree program. The university also has a code of conduct that includes standards for dress, grooming, behavior, and academic honesty.

 

 

 

 

 

 

 

 

 

 

 

 

 

Standards Idaho

Top Deck View

University of Bath: Department of Estates

BSI Group Standards Catalog

BSI Group Standards Catalog

*After the Roman period, Bath remained a small town until the 18th century, when it became a fashionable spa destination for the wealthy. The architect John Wood the Elder designed much of the city’s Georgian architecture, including the famous Royal Crescent and the Circus. Bath also played an important role in the English literary scene, as several famous authors, including Jane Austen, lived and wrote in the city.   During the 19th century, Bath’s popularity declined as other spa towns became fashionable. In the 20th century, the city experienced significant redevelopment and preservation efforts, including the restoration of its Roman baths and the construction of a new spa complex.

Today, Bath is a UNESCO World Heritage Site and a popular tourist destination known for its historical and cultural significance.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content