We are observers in the development of a new ANSI accredited electronic equipment recycling standard produced with the leadership of NSF International; a Michigan-based standards developer (founded at the University of Michigan) not far from our own offices and one of the largest in the world.
The electronic recycling space is growing quickly — reaching far upstream the value chain into how electronic equipment is designed in the first place. An overview of the project is available in the link below:
Joint Committee on Environmental Leadership Standard for Servers
A public edition is linked below:
This standard moved swiftly to market under NSF International’s continuous maintenance process. We bring it to the attention of the education facilities industry as a recommendation for lowering #TotalCostofOwnership. Participation as a User interest in American national standards development reduces “wheel reinvention” in which many recycling workgroups unnecessarily start from scratch, eliminates the need to attend costly workshops hosted by trade associations and significantly minimizes destructive competition.
This title is on the standing agenda of our Redivivus colloquium. Since our interest lies primarily with electrotechnology we collaborate with the IEEE Standards Association. See our CALENDAR for the next online meeting; open to everyone.
Issue: [14-74], [15-147], [15-148]
Category: Electrical, Telecommunications, Interior
Colleagues: Mike Anthony, Jim Harvey, Richard Robben
The heating and cooling requirements of K-12 schools, college and university educational, medical research and healthcare delivery campuses are a large market for boiler pressure vessel manufacturers, installers, maintenance personnel and inspectors. The demand for building new, and upgrading existing boilers — either single building boilers, regional boilers or central district energy boilers — presents a large market for professional engineering firms also. A large research university, for example, will have dozens, if not well over 100 boilers that heat and cool square footage in all climates throughout the year. The same boilers provide heating and cooling for data centers, laundry operations, kitchen steam tables in hospitals and dormitories.
The safety rules for these large, complex and frankly, fearsome systems, have been developed by many generations of mechanical engineering professionals in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). From the BPVC scope statement:
“…The International Boiler and Pressure Vessel Code establishes rules of safety — relating only to pressure integrity — governing the design, fabrication, and inspection of boilers and pressure vessels, and nuclear power plant components during construction. The objective of the rules is to provide a margin for deterioration in service. Advancements in design and material and the evidence of experience are constantly being added…”
Many state and local governments incorporate the BPVC by reference into public safety regulations and have established boiler safety agencies. Boiler explosions are fairly common, as a simple internet search on the term “school boiler explosion” will reveal. We linked one such incident at the bottom of this page.
The 2023 Edition of the BPVC is the current edition; though the document is divided into many sections that change quickly.
ASME Codes & Standards Electronic Tools
ASME Proposals Available For Public Review
ASME Section IV: Rules for the Construction of Heating Boilers (2019)
Public consultation on changes to the BPVC standard for power boilers closes February 7th.
This is a fairly stable domain at the moment. We direct you elsewhere to emergent topics:
Ghost kitchens gaining steam on college campuses
College: the Next Big Frontier for Ghost Kitchens
Illinois Admin. Code tit. 77, § 890.1220 – Hot Water Supply and Distribution
Design Considerations for Hot Water Plumbing
FREE ACCESS: 2019 ASME Boiler and Pressure Code (Section VI)
Two characteristics of the ASME standards development process are noteworthy:
We unpack the ASME bibliography primarily during our Mechanical, Plumbing and Energy colloquia; and also during our coverage of large central laundry and food preparation (Kitchens 100) colloquia. See our CALENDAR for the next online meeting, open to everyone.
Issue: [12-33] [15-4] [15-161] [16-77] [18-4] [19-157]
Category: District Energy, Energy, Mechanical, Kitchens, Hot Water
Contact: Eric Albert, Richard Robben, Larry Spielvogel
More:
Standards Michigan BPVC Archive
Big Ten & Friends Energy Conference 2023
Standards Michigan Workspace (Requires access credentials from bella@standardsmichigan.com).
School Boiler Maintenance Programs: How Safe Are The Children?
Boiler Explodes at Indiana High School
Engineers at @virginia_tech are boosting heat transfer by prompting bubbles to jump from a heated plate during boiling, potentially increasing power plant efficiency with microstructures: https://t.co/W1gLvhn15q pic.twitter.com/45PNRAEmpB
— ASME.org (@ASMEdotorg) January 30, 2024
The MIL-SPEC catalog and its evolution have had a significant impact on various industries beyond the military sector. Many civilian industries have adopted military standards as a benchmark for quality, reliability, and compatibility in their products and processes.
World War II Era:
The MIL-SPEC system traces its roots back to the World War II era when the U.S. military faced challenges in coordinating manufacturing efforts across multiple suppliers. To address these challenges, the military began developing specifications and standards that detailed the requirements for various equipment and materials, including dimensions, materials, performance criteria, and testing procedures.
Post-World War II:
After World War II, the MIL-SPEC catalog expanded significantly to cover a wide range of military equipment, ranging from electronics and aircraft components to clothing and food supplies. The standards were continuously updated and revised based on technological advancements, lessons learned, and evolving military needs.
Evolution into MIL-STD:
In the 1950s and 1960s, the MIL-SPEC system evolved into the Military Standard (MIL-STD) system to provide even more comprehensive and detailed specifications. MIL-STD documents incorporated a broader scope of requirements, including design criteria, quality control processes, and test methodologies. The MIL-STD system aimed to ensure consistent design and manufacturing practices across contractors and suppliers.
MIL-STD Transition to Commercial Standards:
Over time, the reliance on MIL-STDs started to decline, and there was a shift towards adopting commercial standards whenever possible. This transition allowed the military to benefit from the advancements and cost efficiencies of commercial technologies. However, certain critical military-specific standards, such as those related to security and specialized equipment, continued to be maintained within the MIL-STD framework.
DoD’s Transition to Performance-Based Specifications:
In recent years, the DoD has been moving away from prescriptive specifications (MIL-STDs) towards performance-based specifications. Performance-based specifications focus on defining the desired outcomes and performance requirements while allowing contractors greater flexibility in meeting those requirements. This approach encourages innovation, cost-effectiveness, and broader industry participation in military contracts.
— Elon Musk (@elonmusk) August 4, 2024
Partial map of the Internet based on the January 15, 2005 data found on opte.org. Each line is drawn between two nodes, representing two IP addresses. The length of the lines are indicative of the delay between those two nodes. This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005. Lines are color-coded according to their corresponding RFC 1918 allocation
Today we refresh our understanding of energy-related best practice literature according to the topical tranches we have deployed since 2023:
Energy 200: Codes and standards for building premise energy systems. (Electrical, heating and cooling of the building envelope)
Energy 300: Codes and standards that support the energy systems required for information and communication technology
IEEE Energy Efficiency in Data Centers
ISO/IEC 30134 Series | CENELEC EN 50600 Series
ASHRAE 90.4 Energy Standard for Data Centers
ENERGY STAR Data Center Storage
European Code of Conduct for Data Centres Energy Efficiency
TIA-942 Telecommunications Infrastructure Standard for Data Centers
BICSI 002: Data Center Design and Implementation Best Practices, including energy management
Uptime Institute Annual Global Data Center Survey
Energy 400: Codes and standards for energy systems between campus buildings. (District energy systems including interdependence with electrical and water supply)
A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation. Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.
Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:
ASME A13.1 – 20XX, Scheme for the Identification of Piping Systems | Consultation closes 6/20/2023
ASME Boiler Pressure Vessel Code
ASME BPVC Codes & Standards Errata and Notices
ASHRAE International 90.1 — Energy Standard for Buildings Except Low-Rise Residential Buildings
2018 International Green Construction Code® Powered by Standard 189.1-2017
NFPA 855 Standard for the Installation of Stationary Energy Storage Systems
IEEE Electrical energy technical literature
ASTM Energy & Utilities Overview
Underwriters Laboratories Energy and Utilities
There are other ad hoc and open-source consortia that occupy at least a niche in this domain. All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.
Please join our daily colloquia using the login credentials at the upper right of our home page.
ICYMI – here is our 50th anniversary lecture from Professor Helen Thompson on the 1970s energy crises and what we can learn from it, with some great questions from our audience! https://t.co/9XUqc3fx5f pic.twitter.com/zHvqY8HYL1
— Clare College (@ClareCollege) March 9, 2023
More
United States Department of Energy
International Energy Agency World Energy Outlook 2022
International Standardization Organization
Energy and heat transfer engineering in general
Economics of Energy, Volume: 4.9 Article: 48 , James L. Sweeney, Stanford University
Helmholtz and the Conservation of Energy, By Kenneth L. Caneva, MIT Press
NRG Provides Strategic Update and Announces New Capital Allocation Framework at 2023 Investor Day
From our video archive:
Ask me why pic.twitter.com/zQIpuI7vCh
— Grace Stanke (@Grace_Stanke) August 23, 2023
Education communities are stewards of hundreds of commercial-class kitchens in which the proximate risk of electrical energy must be managed — water spills and grease, fires, worn electrical cords on countertop equipment, faulty wiring or equipment, damaged outlets or connectors, and improperly used or damaged extension cords among them. The safety and sustainability rules for this occupancy class is identified as Assembly Group A-2 in Section 303 of the International Building Code
We explore recent transcripts of expert committee activity in NEC Article 210 and provide links to video commentary.
Public comment on the Second Draft of the 2026 NEC will be received until April 18. We typically coordinate our effort with the IEEE Education & Healthcare Facilities Committee. The workspace set up for generating proposals can be found in the link below.
2023 National Electrical Code (Free Access)
Other access portals:
Michigan Electrical Code: Part 8 Rules
Transcripts of the 2023 NEC are linked below:
We examine transcripts to track technical specifics that apply to student accommodation kitchens (on and off campus), university-affiliated hospital kitchens and sport arenas.
Relevant Research:
Smart Kitchen: Real Time Monitoring of Kitchen through IoT
Design of Chinese Smart Kitchen Based on Users’ Behavior
Intelligent kitchen management system based on gas safety
A Futuristic Kitchen Assistant – Powered by Artificial Intelligence and Robotics
A Multi-radar Architecture for Human Activity Recognition in Indoor Kitchen Environments
ASHRAE Laboratory Design Guide, Second Edition
Classification of Laboratory Ventilation Design Levels
ISO/DIS 22544Laboratory design — Vocabulary (Under Development)
The Haldane Principle § “On Being the Right Size” J.B.S Haldane
We break down our coverage of laboratory safety and sustainability standards thus:
Laboratories 100 covers a broad overview of the safety and sustainability standards setting catalogs; emphasis on titles incorporated by reference into public safety laws.
Laboratories 200 covers laboratory occupancies primarily for teaching
Laboratories 300 covers laboratories in healthcare clinical delivery.
Laboratories 400 covers laboratories for scientific research; long since creating the field of environmental health and safety in higher education and a language (and acronyms of its own: CSHEMA)
In the most recent fiscal year, the National Institutes of Health had a budget of approximately $47.7 billion. A substantial portion of this budget is allocated to research at colleges and universities. Specifically, about 83% of NIH’s funding, which translates to roughly $39.6 billion, is awarded for extramural research. This funding is distributed through nearly 50,000 competitive grants to more than 2,500 universities, medical schools, and other research institutions across the United States
The cost to build a “standard” classroom runs about $150 to $400 per square foot; a scientific research laboratory about $400 to $1200 per square foot.
Laboratories 500 is broken out as a separate but related topic and will cover conformity and case studies that resulted in litigation. Both Laboratories 200 and 400 will refer to the cases but not given a separate colloquium unless needed.
At the usual time. Use the login credentials at the upper right of our home page.
February 27, 2023
Research findings related to laboratory safety:
These recent research findings suggest that laboratory safety culture can be improved through a variety of approaches, including hazard assessment tools, peer-to-peer feedback and coaching, interactive training, and safety climate surveys. Some of these findings will likely set the standard of care we will see in safety standards incorporated by reference into public safety regulations.
Related:
November 29, 2021
Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world. We will drill into the International Code Council Group A titles which are receiving public input until January 10, 2022.
Join us by clicking the Daily Colloquia link at the upper right of our home page.
The original University of Michigan Workspace for [Issue 13-28] in which we advocate for risk-informed eyewash and emergency shower testing intervals has been upgraded to the new Google Sites platform: CLICK HERE
Related:
September 20, 2021
Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.
Classification of Laboratory Ventilation Design Levels – ASHRAE
ASHRAE Laboratory Design Guide
Join us by clicking the Daily Colloquia link at the upper right of our home page.
May 10, 2021
Today we will poke through a few proposals for the 2021/222 revision of the International Code Council’s Group A Codes. For example:
IFC § 202 et. al | F175-21| Healthcare Laboratory Definition
IBC § 202 et. al | E7-21| Collaboration Room
IBC § 1110.3 et. al | E143-21| Medical scrub sinks, art sinks, laboratory sinks
. . .
IFGC § 403, etl al| G1-21| Accessibility of fuel gas shut off valves
IBC § 307 Tables | G36-21| For hazardous materials in Group B higher education laboratory occupancies
IBC § 302.1 et. al | G121-21| Separation from other nonlaboratory areas for higher education laboratories
And about 20 others we discussed during the Group A Hearings ended last week. We will have until July 2nd to respond. The electrotechnology proposals will be referred to the IEEE Education & Healthcare Facilities Committee which is now preparing responses to this compilation by Kimberly Paarlberg.
March 15, 2021
Today we break down action in the literature governing the safety and sustainability of instruction and research laboratories in the United States specifically; but also with sensitivity to similar enterprises in research universities elsewhere in the world. “Everyone” has an iron in this fire:
International Building Code Chapter 38: Higher Education Laboratories
ASCE Structural Engineering Institute (so that the foundations and “bone structure” of laboratories survive earthquakes, floods and other Force majeure mayhem)
National Electrical Code Chapter 5: Special Occupancies
ASHRAE Laboratory Design Guide
NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals
IEEE Electrical Safety in Academic Laboratories
…and ISEA, AWWA, AIHA, BIFMA, CLSI, LIA, IAPMO, NSF, UL etc. among ANSI accredited standards developing organizations…
..and addition to NIST, Federal code of Regulations Title 29, NIH, CDC, FEMA, OSHA etc
…and state level public health regulations; some of them adapted from OSHA safety plans
Classroom and offices are far simpler. Laboratories are technically complicated and sensitive area of concern for education communities not only responsible for the safety of instructional laboratories but also global communities with faculty and staff that must simultaneously collaborate and compete. We have been tip-toeing through the technical and political minefields for nearly 20 years now and have had some modest success that contributes to higher safety and lower costs for the US education community.
Colloquium open to everyone. Use the login credentials at the upper right of our home page.
More
Occupational Safety and Health Administration
National Institutes of Health
Centers for Disease Control and Prevention
NFPA Fire Code requirements for laboratories at colleges and universities
Clinical and Laboratory Standards Institute
National Conference of Standards Laboratories
National Institute of Standards and Technology/Information Technology Laboratory
2024 GROUP A PROPOSED CHANGES TO THE I-CODES: Complete Monograph (2658 pages)
Note the following changes in the transcript above:
Section 702 (Rated Construction), FS44-24 Installer Qualifications (typical marketmaking), Section 3801 (Materials exceeding the Maximum Allowable Quantity), F59-24 (Battery Containment Areas), F81-24 (Health Care Facility Plugs), F112-24 (Lithium Ion Battery Labs), F197-24 (Market making, laboratory oven protection study), F235-24 (Hazardous Materials Classifications & quantity limits).
Safety and sustainability concepts for research and healthcare delivery cut across many disciplines and standards suites and provides significant revenue for most research universities. The International Code Council provides free access to current editions of its catalog of titles incorporated by reference into public safety law. CLICK HERE for an interactive edition of Chapter 38 of the 2021 International Fire Code.
During today’s colloquium we will examine consultations for the next edition in the link below:
2021 International Fire Code Chapter 38 Higher Education Laboratories
We encourage our colleagues to participate directly in the ICC Code Development process. The next revision of the International Fire Code will be undertaken accordingly to next ICC Code Development schedule; the timetable linked below:
2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE
We encourage directly employed front-line staff of a school district, college or university that does not operate in a conformance/compliance capacity — for example, a facility manager of an academic unit — to join a committee. Not the Fire Marshall. Not the Occupational Safety Inspector. Persons with job titles listed below:
These subject matter experts generally have a user-interest point of view.
Contact Kimberly Paarlberg (kpaarlberg@iccsafe.org) for information about how to do so.
A warm welcome to our new master’s student, Prabhakar Bijalwan! Prabhakar enjoys performing new #Autocatalytic #Transamination #Metathesis reactions in our lab! #WasteReduction #Sustainability @UniFAU
Check out our first autocatalytic transamination: https://t.co/ZaA9TD787T pic.twitter.com/RLqrfxD4CR
— Svetlana Tsogoeva (@Tsogoeva_Group) April 3, 2024
Related:
2021 International Mechanical Code
2021 International Plumbing Code
2021 International Energy Conservation Code
Issue 16-69
Category: Fire Safety, Facility Asset Management
Colleagues: Joe DeRosier, Josh Elvove, Mark Schaufele
National Collegiate Athletic Association: August 2022 IRS Form 900 Tax Filing
After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110, the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.For almost all athletic facilities, the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety. For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site. Sometimes concepts to meet both life safety and business objectives merge.
During hockey season the document linked below provides information to illumination designers and facility managers:
Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States. We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises. We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.
See our CALENDAR for our next colloquium on Sport facility codes and standards. We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.
Issue: [15-138]*
Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics
Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs
LEARN MORE:
[1] Illumination Engineering Handbook
[2] IEEE 3001.9 Recommended Practice for Design of Power Systems for Supplying Lighting Systems for Commercial & Industrial Facilities
[3] IEEE 3006.1 Power System Reliability
* Issue numbering before 2016 dates back to the original University of Michigan codes and standards advocacy enterprise
NFPA 1 Chapter 18 – Fire Department Access and Water Supply
Public Input on the 2027 Edition closes June 4, 2025
The parent title in the NFPA catalog — NFPA 1 — sets standards for fire lanes by addressing them within various chapters and sections; depending on the specific aspects of fire protection, access, and safety they pertain to. Here are some of the key sections and chapters in NFPA 1 that may include relevant information regarding fire lanes:
Since NFPA 1 covers a wide range of fire safety topics, including building design, fire protection systems, and emergency procedures, specific requirements related to fire lanes may be distributed throughout the document rather than consolidated in a single section. It’s important to carefully review the relevant chapters and sections of NFPA 1 to ensure compliance with applicable requirements for fire lane design, construction, and maintenance.
Best practice for determining snow zones, as the criteria for designating these zones can vary depending on factors such as geography, climate, population density, infrastructure, and available resources. However, municipalities typically develop their own criteria and guidelines based on these factors to create effective snow removal plans.
Common principles and factors that many municipalities consider when determining snow zones, as mentioned in the previous response. These include weather patterns, topography, traffic volume and patterns, residential density, critical infrastructure, public safety considerations, and feedback from residents and stakeholders.
Some municipalities may also adopt best practices and recommendations from organizations such as the American Public Works Association (APWA) or the National Association of City Transportation Officials (NACTO) to inform their snow removal planning processes. These organizations may offer guidance on snow zone designations, prioritization of routes, and effective snow removal techniques based on industry standards and research.
Ultimately snow zones respond to the specific needs and characteristics of each municipality, with the goal of efficiently managing winter weather events to ensure public safety and mobility.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwB pic.twitter.com/GkAXrHoQ9T
— USPTO (@uspto) July 13, 2023
Standards Michigan Group, LLC
2723 South State Street | Suite 150
Ann Arbor, MI 48104 USA
888-746-3670