Tag Archives: D6

Loading
loading..

Sport Lighting

Athletic and recreational sports enterprises are important features in education communities; supportive of brand identity and cohort creation.  Assuring the safety and sustainability of these assets is informed by several best practice titles; among them the Illuminating Engineering Society recommended practice RP-6-15 Sports and Recreational Area Lighting  From the project prospectus:

The purpose of RP-6-15  is to provide the reader with recommendations to aid in the design of sports lighting systems. Popular sports, such as baseball, tennis, basketball and football as well as recreational social activities, such as horseshoe pitching and croquet are covered. Venues for spectators of amateur, collegiate, and professional sports are complex facilities that should provide not only for the spectators, but also the equipment used in modern sports broadcasting. This document does not address those needs, so the reader should look for guidance from the sports league or the project consultant.
Sports lighting systems consume power which over time can be significant, and IES RP-6-15 defines methods for maximizing energy efficiency.

The IES-suite joins standards developed by the International Code Council (International Building Code), the Institute of Electrical and Electronic Engineers (IEEE 3001.9) and the National Fire Protection Association (NFPA 70) that must be applied skillfully by design professionals and understood by athletic facility managers.  Other consensus standards developers such as the American Society of Heating and Refrigeration Engineers and the Entertainment Services and Technology Association were moving into this domain before the circumstances of the pandemic.

We always encourage our colleagues in the education industry to do so themselves; starting with the links below:

Committees

IES Standards Open for Public Review

There are no sport-related titles open for public consultation at this time.

Keep in mind that the IES typically deals with the application of best practice in illumination.  It neither covers the reliability of the power systems nor the power chain to the luminaries.  Recommended practice for the power chain are now being developed by the IEEE Industrial Applications Society; specifically IEEE 3001.9 – Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities.  The IEEE Education & Healthcare Facilities Committee pulls together ALL the standards — ICC, IEEE, IEC, NFPA, IES, ASHRAE, ASTM, ESTA and any other emergent consensus or open source documents that might set the standard of care for the education industry.

University of Michigan

The IEEE E&H Committee meets online 4 times monthly in Europe and the United States; and those meetings are open to the public (CLICK HERE).   Additionally, we set aside one hour every month to walk through the entire suite of standards for sports and recreation facilities.   See our CALENDAR for the date of our next Athletic & Recreation standards teleconference.  Login credential are at the upper right of our home page

Issue: [16-132]

Category: Electrical, Athletics & Recreation

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

 

print(“Python”)

Thursday, June 27, 2024: Python 3.13.0 beta 3 released

 

“Python is the programming equivalent

of a Swiss Army Knife.”

— Some guy

 

The Python Standard Library

Open source standards development is characterized by very open exchange, collaborative participation, rapid prototyping, transparency and meritocracy.   The Python programming language is a high-level, interpreted language that is widely used for general-purpose programming. Python is known for its readability, simplicity, and ease of use, making it a popular choice for beginners and experienced developers alike.  Python has a large and active community of developers, which has led to the creation of a vast ecosystem of libraries, frameworks, and tools that can be used for a wide range of applications. These include web development, scientific computing, data analysis, machine learning, and more.

Another important aspect of Python is its versatility. It can be used on a wide range of platforms, including Windows, macOS, Linux, and even mobile devices. Python is also compatible with many other programming languages and can be integrated with other tools and technologies, making it a powerful tool for software development.  Overall, the simplicity, readability, versatility, and large community support of Python make it a valuable programming language to learn for anyone interested in software development including building automation.

As open source software, anyone may suggest an improvement to Python(3.X) starting at the link below:

Python Enhancement Program

Python Download for Windows

Python can be used to control building automation systems. Building automation systems are typically used to control various systems within a building, such as heating, ventilation, air conditioning, lighting, security, and more. Python can be used to control these systems by interacting with the control systems through the building’s network or other interfaces.

There are several Python libraries available that can be used for building automation, including PyVISA, which is used to communicate with instrumentation and control systems, and PyModbus, which is used to communicate with Modbus devices commonly used in building automation systems. Python can also be used to develop custom applications and scripts to automate building systems, such as scheduling temperature setpoints, turning on and off lights, and adjusting ventilation systems based on occupancy or other variables. Overall, Python’s flexibility and versatility make it well-suited for use in building automation systems.

Subversion®

Building Automation & Control Networks

Farm Electrical Power

ACTION ITEMS:

Article 547: Agricultural Buildings

Public Input with Responses from CMP-7 (Start at PDF Page 187)

Public Input with Responses from CMP-2 Article 220 Part V: Farm Load Calculations (Start at PDF Page 28)

Related: National Electrical Safety Code (Higher Voltage Distribution Wiring from Merchant Utility to Off-Campus Agricultural Outbuildings)

Sunday, Animal, Farm, Agri

Many land grant colleges and universities are stewards of agricultural facilities that require reliable electrical power that is safe and sustainable for livestock and animal habitat for sporting.

FREE ACCESS: 2023 National Electrical Code

The premise wiring rules for hazardous university owned buildings have been relatively stable.  Electrical professionals are guided by:

  1. Farm Load Calculations of Part V of Article 220,
  2. Corrosion mitigation with appropriate specification of power chain wiring
  3. Stray voltage and the equipotential plane
  4. Interactivity with regulated utility power sources.

Public response to the First Draft of the 2026 National Electrical Code will be received until August 28, 2024.  We coordinate our approach to the entire NFPA electrical suite with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly.  We typically refer to previous transcripts of technical committee actions to inform any changes (improvements) that we propose, if any.

2026 National Electrical Code Workspace

We maintain this issue on the standing agenda of our Power and Nourriture (Food) colloquia.  Feel free to join us with the login credentials at the upper right of our home page.


More:

2028 National Electrical Safety Code

Stray Voltage: Sources and Solutions

University of Nebraska: G87-845 Electrical Systems for Agricultural Buildings (Recommended Practices)

Cornell University Agricultural Safety and Health Program

Mike Holt

Fred Hartwell

National Safety Council  (22 deaths by electrocution on farms per 100,000 in 2017)

National Agricultural  Safety Database

 

Steeplechase Water Jump

The steeplechase event requires a combination of speed, endurance, and jumping ability, as athletes must clear the barriers while maintaining their pace and negotiating the water jump. The rules and specifications for the steeplechase event are set by the International Association of Athletics Federations the governing body for the sport of athletics (track and field) worldwide; with minor adaptations by the NCAA for intercollegiate competition.

Emma Coburn | University of Colorado Boulder

The steeplechase is a distance race with barriers and a water pit that athletes must clear during the race.  According to the NCAA Track and Field and Cross Country rulebook, the standards for the steeplechase water jump are as follows:

  1. Length: The water pit must be at least 3.66 meters (12 feet) long.
  2. Width: The water pit must be at least 3.66 meters (12 feet) wide.
  3. Depth: The water pit must have a minimum depth of 0.7 meters (2 feet 4 inches) and a maximum depth of 0.9 meters (2 feet 11 inches).
  4. Slope: The slope of the water pit must not exceed 1:5, meaning that for every 5 meters in length, the water pit can rise by no more than 1 meter in height.
  5. Barrier: The water pit must be preceded by a solid barrier that is 91.4 cm (3 feet) high. Athletes are required to clear this barrier before landing in the water pit.

These standards may be subject to change and may vary depending on the specific NCAA division (Division I, Division II, or Division III) and other factors such as venue requirements. Therefore, it’s always best to refer to the official NCAA rules and regulations for the most up-to-date and accurate information on the steeplechase water jump standards in NCAA competitions.

ASTM F 2157-09 (2018) Standard Specification for Synthetic Surfaced Running Tracks
This specification establishes the minimum performance requirements and classification when tested in accordance with the procedures outlined within this specification. All documents referencing this specification must include classification required.

ASTM F 2569-11 Standard Test Method for Evaluating the Force Reduction Properties of Surfaces for Athletic Use
This test method covers the quantitative measurement and normalization of impact forces generated through a mechanical impact test on an athletic surface. The impact forces simulated in this test method are intended to represent those produced by lower extremities of an athlete during landing events on sport or athletic surfaces.

ASTM F 2949-12 Standard Specification for Pole Vault Box Collars
This specification covers minimum requirements of size, physical characteristics of materials, standard testing procedures, labeling and identification of pole vault box collars.

ASTM F 1162/F1162M-18 Standard Specification for Pole Vault Landing Systems
This specification covers minimum requirements of size, physical characteristics of materials, standard testing procedures, labeling and identification of pole vault landing systems.

ASTM F 2270-12 (2018) Standard Guide for Construction and Maintenance of Warning Track Areas on Sports Fields
This guide covers techniques that are appropriate for the construction and maintenance of warning track areas on sports fields. This guide provides guidance for the selection of materials, such as soil and sand for use in constructing or reconditioning warning track areas and for selection of management practices that will maintain a safe and functioning warning track.

ASTM F 2650-17e1 Standard Terminology Relating to Impact Testing of Sports Surfaces and Equipment
This terminology covers terms related to impact test methods and impact attenuation specifications of sports equipment and surfaces.

Sports Equipment & Surfaces

Electrical Resource Adequacy

“When buying and selling are controlled by legislation,
the first things to be bought and sold are legislators.”
— P.J. O’Rourke

Comment on FERC Action

Our interest lies in closing a technical gap that exists upstream from the building service point and downstream from the utility supply point. Some, not all of it, can be accomplished with titles in the IEEE catalog. Given the strength of vertical incumbents in the electric power domain, we will submit a tranche of reliability concepts into the ASHRAE, NFPA and ICC catalogs — not so much with the expectation that they will be gratefully received — but that our proposals will unleash competitive energies among partisans in the standards setting industry.

Predictive Reliability Analysis of Power Distribution Systems Considering the Effects of Seasonal Factors on Outage Data Using Weibull Analysis Combined With Polynomial Regression


February 2024 Highlights 

Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis

January 2024 Highlights



Transmission Planning Using a Reliability Criterion

Readings / The Administrative State

In power system engineering, availability and reliability are two important concepts, but they refer to different aspects of the system’s performance.

Reliability:

  • Reliability refers to the ability of a power system to perform its intended function without failure for a specified period under given operating conditions. It is essentially a measure of how dependable the system is.
  • Reliability metrics often include indices such as the frequency and duration of outages, failure rates, mean time between failures (MTBF), and similar measures.
  • Reliability analysis focuses on identifying potential failure modes, predicting failure probabilities, and implementing measures to mitigate risks and improve system resilience.Availability:
  • Availability, on the other hand, refers to the proportion of time that a power system is operational and able to deliver power when needed, considering both scheduled and unscheduled downtime.
  • Availability is influenced by factors such as maintenance schedules, repair times, and system design redundancies.
  • Availability is typically expressed as a percentage and can be calculated using the ratio of the uptime to the total time (uptime plus downtime).
  • Availability analysis aims to maximize the operational readiness of the system by minimizing downtime and optimizing maintenance strategies.

Reliability focuses on the likelihood of failure and the ability of the system to sustain operations over time, while availability concerns the actual uptime and downtime of the system, reflecting its readiness to deliver power when required. Both concepts are crucial for assessing and improving the performance of power systems, but they address different aspects of system behavior.

 

November 2023 Highlights | FERC insight | Volume 10

Determining System and Subsystem Availability Requirements: Resource Planning and Evaluation

Comment: These 1-hour sessions tend to be administrative in substance, meeting the minimum requirements of the Sunshine Act. This meeting was no exception. Access to the substance of the docket is linked here.

Noteworthy: Research into the natural gas supply following Winter Storm Elliot.

 


August 14, 2003


 UPDATED POLICIES ON U.S. DECARBONIZATION AND TECHNOLOGY TRANSITIONS


June 15:FERC Finalizes Plans to Boost Grid Reliability in Extreme Weather Conditions

On Monday June 13th, Federal Energy Regulatory Commission commissioners informed the House Committee on Energy and Commerce that the “environmental justice” agenda prohibits reliable dispatchable electric power needed for national power security. One megawatt of natural gas generation does not equal one megawatt of renewable generation. The minority party on the committee — the oldest standing legislative committee in the House of Representatives (established 1795) — appears indifferent to the reliability consequences of its policy.

Joint Federal-State Task Force on Electric Transmission

“Our nation’s continued energy transition requires the efficient development of new transmission infrastructure. Federal and state regulators must address numerous transmission-related issues, including how to plan and pay for new transmission infrastructure and how to navigate shared federal-state regulatory authority and processes. As a result, the time is ripe for greater federal-state coordination and cooperation.”












 

Bibliography:

Natural Gas Act of 1938

Natural Gas Policy Act of 1978

Glossary of Terms Used in NERC Reliability Standards

The Major Questions Doctrine and Transmission Planning Reform

As utilities spend billions on transmission, support builds for independent monitoring

States press FERC for independent monitors on transmission planning, spending as Southern Co. balks

Related:

Homeland Power Security

At the July 20th meeting of the Federal Energy Regulatory Commission Tristan Kessler explained the technical basis for a Draft Final Rule for Improvements to Generator Interconnection Procedures and Agreements, On August 16th the Commission posted a video reflecting changes in national energy policy since August 14, 2003; the largest blackout in American history.

Wild Blueberries

History of the English Speaking Peoples

Michigan Central

Since so much of what we do in standards setting is built upon a foundation of a shared understanding and agreement of the meaning of words (no less so than in technical standard setting) that time is well spent reflecting upon the origin of the nouns and verbs of that we use every day.   Best practice cannot be discovered, much less promulgated, without its understanding secured with common language.

Word Counts

 

2024 Alumni Awards

Arenas, Lecture Halls & Theaters

National Fire Protection Association | 2022 Revenue $82M

2026 NEC Code Panel 15 Public Input Report with Committee Response

Note in the transcript above that the four proposals submitted by Standards Michigan relate to healthcare facilities.  Code Panel 15 receives proposals for healthcare and assembly occupancy wiring safety concepts.

Marcel Jambon for an 1895 Paris production of Giuseppe Verdi’s Otello.

The standard of care for electrical system safety in dramatic art facilities in the education, and other industries, is largely established in Articles 518 through Article 540 of the National Electrical Code (NEC).   In some instances, dramatic art activity takes place in athletic arenas so we are mindful of parent standards for assembly occupancies generally; found in Chapter 3 of the International Building Code.

Free public access to the current 2023edition of the NEC is linked below:

2023 National Electrical Code

Of particular interest is the “technical power system” found in Article 640: Audio Signal Processing, Amplification, and Reproduction Equipment.

Access to the International Building Code on “related” occupancies is linked below (Chapter 3 Occupancy Classification and Use):

2021 International Building Code

Note the imperfect correlation between the NFPA and ICC occupancy definitions.  This never happens by design but is sometimes necessary.  Some risk aggregations have to be understood as terms of art; to be understood by seasoned experts in context.  Also, keep in mind that the NEC is a wiring installation safety code.

Proposals for revisions to assembly-related installations in the for 2023 is linked below:

NFPA 70 Public Input Report for 2023 Assembly Occupancies 

Second Draft Report for all articles assigned to CMP-15

The so called “song and dance” sections of the NEC have been fairly “stable” in recent cycles.  Changes to these articles in the NEC 2020 revision are incremental — i.e clarifications on grounding, wiring methods, cord wiring, illumination — and helpful for designers and inspectors.  Nothing budget busting.   Convergence of fire safety, mass notification,  environmental air and visual experiences continues as once-independent technologies continue integration.

2026 National Electrical Code Workspace

 

We collaborate with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in Europe and the Americas.   See our CALENDAR for the next online teleconferences; open to everyone.

Issue: [Various]

Category: Sport, Electrical, Telecommunications, Fire Protection, Arts & Entertainment Facilities, Lively Art

Colleagues: Mike Anthony, Matt Dozier, Jim Harvey


LEARN MORE:

BS 7827_2011 – Code of practice for designing, specifying, maintaining and operating emergency sound systems at sports venues

Requirements for Hybrid Media Production

Digital Content Production

Archive / Places of Assembly, Lecture Halls & Theaters

Fashion Technology

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton

 

Garment Industry Standards

Gallery: School Uniforms

Textiles

Art, Design & Fashion Studios

Unified English Braille

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content