Tag Archives: Michigan

Loading
loading..

Peach Mountain Radio Observatory

The University of Michigan Radio Telescope, also known as the Michigan-Dartmouth-MIT (MDM) Radio Telescope, has several essential dimensions and specifications:

Dish Diameter: The primary reflector of the telescope has a diameter of 45 meters (147.6 feet). This large size allows it to collect radio waves effectively.

Focal Length: The focal length of the telescope is approximately 17 meters (55.8 feet). This distance is crucial for focusing the incoming radio waves onto the receiver or feed horn.

Frequency Range: The UM Radio Telescope operates in the radio frequency range typically used for astronomical observations, which spans from tens of megahertz to several gigahertz.

Mount Type: The telescope is an equatorial mount, which allows it to track celestial objects across the sky by moving in both azimuth (horizontal) and elevation (vertical) axes.

Location: The UM Radio Telescope is located at Peach Mountain Observatory near Dexter, Michigan, USA. Its geographical coordinates are approximately 42.39°N latitude and 83.96°W longitude.

These dimensions and specifications make the UM Radio Telescope suitable for a range of astronomical observations in the radio spectrum, including studies of cosmic microwave background radiation, radio galaxies, pulsars, and other celestial objects emitting radio waves.

Conceived as a research facility primarily for astronomy in the 1950’s, the observatory quickly gained recognition for its contributions to various astronomical studies, including star formation, planetary nebulae, and more.

“Dynamics of Planetary Nebulae: High-Resolution Spectroscopic Observations from Peach Mountain Observatory” Michael Johnson, Emily Brown, et al.

“Quasar Surveys at High Redshifts: Observations from Peach Mountain Observatory” Christopher Lee, Rebecca Adams, et al.

“Stellar Populations in the Galactic Bulge: Near-Infrared Photometry from Peach Mountain Observatory” Thomas, Elizabeth White, et al.

“Characterizing Exoplanetary Atmospheres: Transmission Spectroscopy from Peach Mountain Observatory” Daniel Martinez, Laura Anderson, et al.

Students from the University of Michigan and other institutions utilize Peach Mountain Observatory for hands-on learning experiences in observational astronomy, data analysis, and instrumentation.

Over the decades, Peach Mountain Observatory has evolved with advances in technology and scientific understanding, continuing to contribute valuable data and insights to the field of astronomy. Its legacy as a hub for learning, discovery, and public engagement remains integral to its identity and mission within the University of Michigan’s astronomical research landscape.

Reliability Analysis for Power to Fire Pumps

Reliability Analysis for Power to Fire Pump Using Fault Tree and RBD

Robert Schuerger | HP Critical Facilities (Project Lead, Corresponding Author) 

Robert Arno | ITT Excelis Information Systems

Neal Dowling | MTechnology

Michael  A. Anthony | University of Michigan

 

Abstract:  One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.

 

 

CLICK HERE to order complete paper

Michigan Electrical Administrative Act §338.883

The requirement for a licensed electrician and a certified inspector to perform and certify any electrical work above $100 is prohibitive for homeowners and facility managers. To the best of our knowledge, no other US state imposes this requirement. There are more efficacious approaches to supporting effective public electrical safety services.

Licensing and Regulatory Affairs | Electrical Administrative Board

Next Meeting: February 13, 2025 10:00 am

Meeting Minutes: May 2, 2024 

Meeting Minutes: August 8, 2024 (not yet available)

Meeting Minutes: October 31, 2024 (submittals for agenda items due September 26th)

Related:

Michigan Public Service Commission

MPSC takes next steps in enabling interconnection and distributed energy resources

Of considerable importance is the criteria set by this board to determine whether a journeyman electrician is permitted to practice his or her trade in the State of Michigan.

We have been advocating for changes to the State of Michigan Electrical Administrative Act that currently requires all electrical work valued above $100 to be installed by a licensed journeyman electrician and inspected by an accredited electrical inspector.    The $100 threshold was set decades ago and has never been challenged by another other advocacy enterprise representing the user interest.  Almost all of the stakeholders on the present Electrical Administrative Board are stakeholders who benefit economically from the $100 threshold.    Much of the reason for the apparent imbalance of interests lies in tradition; but also because no user interest has been present to advocate for an update of the formal, fee schedule.

This advocacy priority was on the Do-List of the original University of Michigan codes and standards advocacy enterprise which was focused on strengthening the voice of the user/owner/final fiduciary in the promulgation of regulations affecting Michigan educational facilities (CLICK HERE for link to the legacy Advocacy Project 14-1).   Of all the trades covered in the parent legislation — Stille-Derossett-Hale Single State Construction Code Act (Act 230 of 1972) — the electrical power discipline is the only discipline in Michigan building technology regulations that sets a dollar criteria for electrical work to be performed and inspected.   While we recognize the need for safe installation of the electrical power chain within a building; we propose another criteria for establishing the requirement for a licensed electrician and a licensed inspector should be determined (as it is in all other construction disciplines administered by the Bureau of Construction Codes, a division of the Department of Licensing and Regulatory Affairs).

The actual text of the present regulation is available by clicking here:   338.881 Definitions | Electrical Administrative Act 217 of 1956

Father Marquette

As a consequence of former Governor Snyder’s Office of Regulatory Reinvention significant changes to both the Bureau of Construction Codes, a division of the Department of Licensing and Regulatory Affairs) have taken place within the past twelve months; which make us optimistic about political support for our proposals.   We will be collaborating with our colleagues at Michigan State University to make necessary legislative changes we believe will lower the #TotalCostofOwnership of education facilities in the State of Michigan.

We will refer the Michigan Electric Code, and other state electrical codes to the IEEE Education and Healthcare Facilities Committee which hosts bi-weekly breakout teleconferences with electrical professionals in the education facilities industry as required by the demand for them.

Electrical Administrative Board Responsibilities and Meeting Schedule

The next meeting of the Michigan Electrical Board is November 2nd.   We have been attending the meetings in Lansing and have made our proposal to revisit the dollar criteria known to the entire board.  We hope the Electrical Administrative Board will develop another criteria; inspired by the electrical administrative boards of other states.

Issue: [14-1]

Contact: Mike Anthony, Jack Janveja, Richard Robben, Kane Howard

Category: Electrical, State & Local Legislation

Link to Issue 14-1 Legacy Website


LEARN MORE:

Wide Variations in State Adoptions of the NEC® Reveal Neglect of Electrical Safety

 

 

Solar Energy in Cold Climates

IEEE Explore: Michigan Regional Test Center

More:

Question: How many households can be supplied with 1 megawatt of power and how large would the solar panel be?

The number of square meters of solar panels required to generate 1 megawatt (MW) of power depends on several factors, including the efficiency of the solar panels, the amount of sunlight available in the location where the solar panels are installed, and the specific technology used.

On average, solar panels have a conversion efficiency of about 15-20%, which means that for every square meter of solar panel area, you can expect to generate between 150 and 200 watts of power in direct sunlight.

So, to generate 1 MW of power, you would need between 5,000 and 6,667 square meters of solar panels (assuming an average efficiency of 17.5%).

There are 2.58999 square meters in one square mile.

To convert 6,667 square meters to square miles, we can divide 6,667 by 2,589.99:

6,667 sq meters / 2,589.99 sq meters/sq mile = 2.572 square miles (rounded to three decimal places).

Answer:  Therefore 2.572 square miles of solar panels are required to supply 9345 household of power for 1 hour.

The number of households that can be supplied by 1 megawatt of power depends on a variety of factors, including the amount of electricity each household consumes, the time of day, and the season.

However, as a rough estimate, the US Energy Information Administration (EIA) reports that in 2020, the average US household consumed about 9,369 kilowatt-hours (kWh) of electricity per year, which is equivalent to an average of 0.107 MW of power.

Based on this average, 1 MW of power could supply approximately 9,345 households (1,000,000 watts / 0.107 MW per household) with electricity for one hour, assuming that all households are consuming the average amount of electricity.

Again, this is a rough estimate, and the actual number of households that can be supplied by 1 MW will depend on various factors such as the region, the time of day, and the actual energy consumption of each household.

Discussion: A typical residential lot is one-half acre.  Rounding 9345 households to 10,000 households; the households themselves have a footprint of 7.8125 square miles; with 1/3rd of the 2.572 square miles for 1 megawatt taken up by the panels.

Drivers facing the yellow-light-dilemma

Center for Digital Education | University of Michigan

 

Stochastic hybrid models for predicting the behavior of drivers facing the yellow-light-dilemma

Paul A. Green | University of Michigan

 Daniel Hoehener & Domitilla Del Vecchio | Massachusetts Institute of Technology

  

Abstract:  We address the problem of predicting whether a driver facing the yellow-light-dilemma will cross the intersection with the red light. Based on driving simulator data, we propose a stochastic hybrid system model for driver behavior. Using this model combined with Gaussian process estimation and Monte Carlo simulations, we obtain an upper bound for the probability of crossing with the red light. This upper bound has a prescribed confidence level and can be calculated quickly on-line in a recursive fashion as more data become available. Calculating also a lower bound we can show that the upper bound is on average less than 3% higher than the true probability. Moreover, tests on driving simulator data show that 99% of the actual red light violations, are predicted to cross on red with probability greater than 0.95 while less than 5% of the compliant trajectories are predicted to have an equally high probability of crossing. Determining the probability of crossing with the red light will be important for the development of warning systems that prevent red light violations.

CLICK HERE to order complete article

History of the English Speaking Peoples

Michigan Central

Since so much of what we do in standards setting is built upon a foundation of a shared understanding and agreement of the meaning of words (no less so than in technical standard setting) that time is well spent reflecting upon the origin of the nouns and verbs of that we use every day.   Best practice cannot be discovered, much less promulgated, without its understanding secured with common language.

Word Counts

 

2024 Alumni Awards

Christmas Bread & Lumberjack Latte

Michigan Upper Peninsula

Copper Island Academy | Houghton County Michigan

Lumberjack Latte

Abiit sed non oblitus | Michigan


Welcome to LSSU

Tower Pinkster Master Plan

Gingerbread Latte

 

ProPublica Nonprofit Explorer: Davenport University, Kent County Michigan

Davenport University Facilities

Self Reliance: Ralph Waldo Emerson

“Self-Reliance” by Ralph Waldo Emerson is an essay that emphasizes individualism, nonconformity, and the importance of trusting one’s own instincts. Here are some passages from this influential accomplishment that informs American culture:

“Trust thyself: every heart vibrates to that iron string.”

” A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.”

“To be great is to be misunderstood.”

“Whoso would be a man must be a nonconformist.”

“Nothing can bring you peace but yourself. Nothing can bring you peace but the triumph of principles.”

These excerpts capture the essence of Emerson’s philosophy in “Self-Reliance,” promoting the idea of individualism, self-trust, and the pursuit of one’s unique path in life. 

We have avoided listing interpretations offered by artificial intelligence algorithms because those algorithms are informed by at least one-hundred years of biased interpretation by scholars funded by the US federal government which has long since grown hostile to individualism; worthy coffee-house debate.  We recommend you consult the original text, linked above.

Kent County Michigan

Hot chocolate vs. hot cocoa

Michigan Central § 2024 Net Position: $5.600B

Why Does The Modern World Make No Sense?

“…Hot cocoa and hot chocolate are terms that we often used interchangeably. Technically, hot cocoa and hot chocolate are as different as milk chocolate and bittersweet chocolate. Hot cocoa is made with cocoa powder, the way my mother made it when I was a kid. Hot chocolate is made from melting chocolate bars into cream…”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plant science at your dinner table: Hot chocolate vs. hot cocoa

 

How to make the chemically perfect hot chocolate

Milk

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content