Tag Archives: September

Loading
loading..

Structures

9-11 Commission

Today we examine best practice literature for education building structures developed by accredited and consortia standards developers such as ASCE, ACI, AISC, ASTM, AWS, CRSI, ICC, NFPA and IEEE.   The US education industry among the top three largest building construction markets; with annual new and renovated building construction running close to $100 billion annually.

We limit our coverage to low-risk regions in the US, such as areas with minimal seismic activity, low risk of flooding and moderate weather conditions.  Another huge topic which we will likely break up into separate modules in the fullness of time.  For now, we sweep through the basics:

Foundation

  1. Site Analysis:
    • Conduct soil testing to determine its bearing capacity and composition.
    • Ensure the site is properly graded and drained to prevent water accumulation.
  2. Foundation Type:
    • Slab-on-Grade: Common in residential buildings. A concrete slab is poured directly on the ground.
    • Basement: Provides additional living space and storage, common in residential buildings.
  3. Design and Preparation:
    • Use rebar reinforcement to strengthen the concrete.
    • Install vapor barriers to prevent moisture from seeping through the foundation.
    • Properly compact the soil to prevent settling and shifting.
  4. Concrete Pouring:
    • Use high-quality concrete mix suitable for the local climate.
    • Ensure proper curing of the concrete to achieve maximum strength.
    • Use expansion joints to accommodate temperature changes and prevent cracking.
  5. Waterproofing and Insulation:
    • Apply waterproofing membranes or coatings to protect the foundation from water damage.
    • Insulate the foundation to improve energy efficiency and prevent frost heave in colder climates.

Ironwork

  1. Materials:
    • Use high-quality steel that meets industry standards (e.g., ASTM specifications).
    • Ensure the steel is properly treated to resist corrosion, especially in humid or coastal areas.
  2. Design:
    • Follow structural engineering guidelines and building codes for the specific type of building.
    • Use appropriate load calculations to determine the size and placement of steel beams, columns, and reinforcements.
  3. Fabrication and Assembly:
  4. Erection:
    • Use proper lifting equipment and techniques to safely erect steel structures.
    • Align and level steel components accurately before final fastening.
    • Use bolted connections where possible for ease of assembly and future maintenance.
  5. Inspection and Quality Control:
    • Conduct regular inspections throughout the construction process to ensure compliance with design specifications and building codes.
    • Perform non-destructive testing (e.g., ultrasonic testing) on critical welds and connections.
  6. Protective Coatings:
    • Apply protective coatings (e.g., galvanization, epoxy paint) to steel components to prevent corrosion.
    • Maintain the protective coatings over the lifespan of the building.

Use the login credentials at the upper right of our home page.

 

Related:

Category Archive

Post 9-11 Standards

Following the September 11, 2001 attacks on the World Trade Center, U.S. standards developers — the International Code Council (ICC) and the National Fire Protection Association (NFPA) topmost among them — responded with revisions to technical standards based on thirty findings of the National Institute of Standards and Technology (NIST). These changes aimed to enhance structural integrity, fire safety, and evacuation procedures in high-rise buildings.

Increased Structural Robustness: Codes were updated to improve resistance to progressive collapse, where the failure of one structural element spreads to others. This included increasing the minimum thickness of steel beams and columns and adding more connections between structural elements.

Concrete Reinforcement: Structures like One World Trade Center adopted reinforced concrete cores and thicker structural elements to withstand extreme events.

Fire SafetyEnhanced Fire Resistance: Higher standards for fire-resistant materials were introduced, including mandates for fire sprinklers and smoke alarms in high-rise buildings.

Fire Protection Systems: Improved requirements for active fire protection systems, such as sprinklers, to mitigate fire spread.

Egress and EvacuationElevator Requirements: Elevators are now required in high-rise buildings over 120 feet tall to aid firefighters in accessing upper floors without climbing stairs with heavy equipment.

Additional Stairways: High-rises over 420 feet must include an extra stairway to ensure multiple egress paths.

Exit Path Markings: Self-luminous or photoluminescent exit path markings were mandated to guide occupants to exits during low-visibility emergencies, applied to both new and existing high-rise buildings.

Increased Exit Spacing: Exit enclosures must be spaced farther apart to prevent a single event, like a fire, from blocking multiple exits.

Emergency Communication and PreparednessImproved Communication Systems: Codes now require better communication systems for emergency responders to coordinate during crises, addressing the breakdown in communication during 9/11.

Evacuation Procedures: Elevators can now be used for evacuation in some fire scenarios, a shift from the traditional reliance on stairs, improving evacuation efficiency.

Blast-Resistant Features: Designs for high-profile buildings, like One World Trade Center, incorporated blast-resistant bases (e.g., a 185-foot concrete base) to protect against street-level attacks.

Changes were debated to balance safety with construction costs, with some measures (like exit markings) having minimal cost but significant benefits.  Not all proposals were adopted due to cost concerns or feasibility, but they spurred further structural design advancements.  These changes reflect a shift toward designing buildings to withstand extreme, unpredictable events like terrorist attacks, beyond traditional natural disaster scenarios.

Our work in the NFPA catalog | Our work in the ICC catalog | Our work in the ASCE catalog

What Are People Wearing?

“What you wear is how you present yourself to the world, especially today,

when human contacts are so quick. Fashion is instant language.”

Miuccia Prada

May Ball


University of Cambridge Estates Division

First Day of School

Donegan Acoustics

Today we take a cross cutting review of all the literature (codes, standards, guidelines, laws)  that informs safe and sustainability occupancy load, means of egress, illumination, ambient air, plumbing, electric, communication and acoustics in classrooms.

1. Building Codes

  • International Building Code (IBC): Adopted by most states, it provides guidelines for the design and construction of buildings, including schools.
  • International Existing Building Code (IEBC): Provides standards for the renovation and repair of existing school buildings.
  • State and Local Building Codes: Many states and municipalities have additional or modified codes that must be followed.

2. Fire and Life Safety Codes

  • National Fire Protection Association (NFPA) Codes:
    • NFPA 101: Life Safety Code – Sets requirements for egress, fire protection, and emergency planning.
    • NFPA 13: Installation of Sprinkler Systems – Specifies standards for automatic fire sprinkler systems.
    • NFPA 72: National Fire Alarm and Signaling Code – Covers fire alarm system installation and maintenance.
    • NFPA 70: National Electrical Code (NEC) – Outlines electrical wiring standards to prevent fire hazards.

3. Accessibility Standards

  • Americans with Disabilities Act (ADA):
    • ADA Standards for Accessible Design – Ensures that school facilities are accessible to individuals with disabilities.
  • Architectural Barriers Act (ABA): Requires accessibility in buildings constructed with federal funds.

4. Environmental and Health Standards

Thermal Environmental Conditions for Human Occupancy

  • Environmental Protection Agency (EPA) Regulations:
    • EPA Lead and Asbestos Regulations: Governs the handling of lead and asbestos in school buildings.
    • EPA’s Indoor Air Quality Tools for Schools: Provides guidelines to manage air quality.

5. Structural Standards

  • American Society of Civil Engineers (ASCE):
    • ASCE 7: Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
  • American Concrete Institute (ACI):
    • ACI 318: Building Code Requirements for Structural Concrete.

6. Plumbing and Mechanical Codes

  • International Plumbing Code (IPC): Provides guidelines for plumbing system design and installation.
  • International Mechanical Code (IMC): Sets standards for heating, ventilation, and air conditioning (HVAC) systems.

7. Electrical Standards

  • Institute of Electrical and Electronics Engineers (IEEE) Standards: Includes various electrical safety and installation standards relevant to school facilities.

8. Educational Specifications and Guidelines

  • Council of Educational Facility Planners International (CEFPI) Guidelines: Provides best practices for school design that promote effective learning environments.
  • State-Specific Educational Specifications: Many states have their own guidelines for the design of educational facilities to meet state-specific educational needs.

9. Safety and Security Standards

  • Crime Prevention Through Environmental Design (CPTED) Guidelines: Suggests design strategies to enhance security in school environments.
  • School Safety and Security Standards (state-specific): Some states have additional requirements for school security measures.

10. Sustainable Design Standards

  • LEED (Leadership in Energy and Environmental Design) for Schools: Provides a framework for building green and energy-efficient schools.
  • Green Building Initiative (GBI) Standards: Focuses on sustainable and energy-efficient building practices.

11. Maintenance Standards

  • International Property Maintenance Code (IPMC): Provides guidelines for the maintenance of buildings, ensuring they remain safe and functional over time.

12. Other Relevant Standards

  • Federal Emergency Management Agency (FEMA) Guidelines: Provides standards for building schools in disaster-prone areas (e.g., tornadoes, earthquakes).
  • Occupational Safety and Health Administration (OSHA) Standards: Ensures workplace safety, including in schools, covering areas like chemical safety, electrical safety, and more.

Local Considerations

  • Local Zoning Laws and Ordinances: Schools must also comply with local land use regulations, which may affect building placement, size, and use.

Classroom Acoustics


 

 

Campus Child Day Care

“The concentration of a small child at play
is analogous to the concentration of the artist at work.”

 

§
Page 522/523: 305.2 Group E, day care facilities for five or fewer children.
Page 624: Group E Security
Page 1440: Storm Shelters
§

Today at the usual hour we review a selection of global building codes and standards that guide best practice for safety, accessibility, and functionality for day care facilities; with special interest in the possibilities for co-locating square footage into the (typically) lavish unused space in higher education facilities. 

Use the login credentials at the upper right of our home page.

International Building Code

    • Governs overall building construction, fire safety, occupancy classification, and egress requirements for daycare centers.

International Fire Code

    • Regulates fire prevention measures, emergency exits, fire alarms, sprinkler systems, and evacuation protocols for daycare centers.

National Fire Protection Association

    • NFPA 101 – Life Safety Code: Addresses occupancy classification, means of egress, fire safety, and emergency planning.
    • NFPA 5000 – Building Construction and Safety Code: Provides fire protection and structural safety guidelines.

Americans with Disabilities Act

    • Requires daycare centers to be accessible for children and parents with disabilities, covering entrances, bathrooms, play areas, and signage.

European Norms – CEN Standards

    • EN 1176 – Playground Equipment and Safety Requirements: Covers safety standards for daycare playgrounds and outdoor spaces.
    • EN 16890 – Safety Requirements for Mattresses in Children’s Products.

British Standards (BS) for Early Years Facilities

    • BS 8300: Accessibility requirements for childcare facilities.
    • BS 9999: Fire safety guidance for daycare and educational buildings.

Australian Building Code & National Construction Code

    • Covers fire safety, structural integrity, ventilation, and child safety measures for daycare centers.

ISO 45001 – Occupational Health and Safety Management

    • Establishes safety requirements for employees working in daycare facilities, ensuring a safe environment for both children and staff.

Canadian Building Code & Fire Code (NBC & NFC)

    • Provides structural, fire safety, and child safety guidelines for daycare centers in Canada.

“Kindergarten” 1885 Johann Sperl

Preschool Children in the Dome

Playgrounds

Kindergarten

Gallery: School Uniforms

Traditionally favored by private and parochial institutions, school uniforms are being adopted by US public schools in increasing numbers. According to a 2020 report, the percentage of public schools that required school uniforms jumped from 12% in the 1999-2000 school year to 20% in the 2017-18 school year. School uniforms were most frequently required by elementary schools (23%), followed by middle (18%), and high schools (10%). (Encyclopedia Britannica)

PRO

School uniforms may deter crime and increase student safety.
School uniforms keep students focused on their education, not their clothes.
School uniforms create a level playing field among students, reducing peer pressure and bullying.
Wearing uniforms enhances school pride, unity, and community spirit.
School uniforms may improve attendance and discipline.
Uniform policies save valuable class time because they are easier to enforce than a standard dress code.
School uniforms prevent the display of gang colors and insignia.
School uniforms make getting ready for school easier, which can improve punctuality.
School uniforms can save parents money.
Most parents and educators support mandatory school uniforms.
Students’ legal right to free expression remains intact even with mandatory school uniforms.
Students dressed in uniform are better perceived by teachers and peers.
Students can express their individuality in school uniforms by introducing variations and adding accessories.

 


CON

School uniforms restrict students’ freedom of expression.
School uniforms promote conformity over individuality.
School uniforms do not stop bullying and may increase violent attacks.
School uniforms do not improve attendance, academic preparedness, or exam results.
The key findings used to tout the benefits of uniforms are questionable.
School uniforms emphasize the socio-economic divisions they are supposed to eliminate.
Students oppose school uniforms.
Uniforms may have a detrimental effect on students’ self-image.
Focusing on uniforms takes attention away from finding genuine solutions to problems in education.
The push for school uniforms is driven by commercial interests rather than educational ones.
Parents should be free to choose their children’s clothes without government interference.
School uniforms in public schools undermine the promise of a free education by imposing an extra expense on families.
School uniforms may delay the transition into adulthood.

Northville (Michigan) Christian School Dress Code

Parkway Christian School Dress Code | Sterling Heights Michigan

Style

Pros and Cons of Owning A Dog During College

Getting a dog during college can be an exciting thought for many students who are leaving home and are experiencing their first taste of true freedom; However, many young adults fail to consider the responsibilities and obligations that come with owning a dog while in school.

Apart from the necessity as companions for students with disabilities; consider the following:

Pros:

They can lead to decreased stress.

Dogs have the incredible ability to make you feel more relaxed and less stressed. A study actually found that when people took care of dogs for just three months, they showed significant drops in blood pressure and reactivity to stress. There’s no better feeling than coming home after a long day to your furry best friend who’s thrilled to see you.

They help motivate you to exercise.

Daily exercise is an essential part of a dog’s well-being and absolutely cannot be neglected. However, this requirement becomes mutually beneficial because it also ensures that you’re getting outside daily, intaking sunlight, and getting your own exercise. Even if you’re having a rough day and don’t feel like doing much, your dog will make sure that you go outside and get moving.

They make great companions if you live alone.

Dogs can be fantastic companions for students who choose to live alone. Living by yourself can be lonely. Your pet can serve as a companion to keep you occupied, as well as a solid guard dog when needed (or you can at least let them think they are).

Cons:

They require a time and patience.

If you’re thinking about getting a dog in college, be prepared to commit tons of time and attention to them. Training sessions will be vitally important in ensuring that your dog is potty-trained, can behave on a leash, and can be trusted around other dogs. You’ll also have to make time for vet appointments, play time, and letting them out on a consistent basis.

They can be expensive.

Dogs can be extremely expensive. Between vet bills, food, toys, and general dog supplies, the costs can quickly add up. Assessing your financial situation beforehand and determining whether or not now is the right time for you to get a dog, is absolutely essential.

They can cut into your social life; although can expand your social life with a starting point for common conversation with other dog lovers.

Like it or not, having a dog will cut into your social time with your friends. Staying out until 4 am on the weekends or being away from your house for 12 hours at a time is no longer feasible when your pet is waiting for you at home. Plan to make arrangements to fit your dog’s needs, which may mean missing out on social activities from time to time.

 

Readings

University of Michigan: Animals on Campus

North Central Michigan College

20 Pet Friendly Colleges

Standards Michigan: Animals

“Nipper” RCA Victor

“Mainely” Potato Salad & Wild Blueberry Pie

Standards Maine

Wild Blueberry Pie

Kindergarten

International Building Code: Group A Model Building Codes: 2024/2025/2026 Development Cycle

 

“One Hundred Children Playing in the Spring” | Su Hanchen 蘇漢臣

Safety and sustainability for any facility begins with an understanding of who shall occupy the built environment and how.  University settings, with mixed-use phenomenon arising spontaneously and temporarily, often present challenges.   Educational communities are a convergent settings for families; day care facilities among them.  First principles regarding occupancy classifications for day care facilities appear in Section 308 of the International Building Code, Institutional Group I; linked below:

Section 308 | International Building Code

The ICC Institutional Group I-4 classification includes buildings and structures occupied by more than five persons of any age who received custodial care for fewer than 24 hours per day by persons other than parents or guardian, relatives by blood, marriage or adoption, and in a place other than the home of the person cared far.  This group includes both adult and child day care.

We maintain focus on child day care.  Many educational communities operate child day care enterprises for both academic study and/or as auxiliary (university employee benefit) enterprises.

Princeton University Child Care Center

Each of the International Code Council code development groups fetch back to a shared understanding of the nature of the facility; character of its occupants and prospective usage patterns.

The Group B developmental cycle ended in December 2019.  The 2021 revision of the International Building code is in production now, though likely slowed down because of the pandemic.   Ahead of the formal, market release of the Group B tranche of titles, you can sample the safety concepts in play during this revision with an examination of the documents linked below:

2019 GROUP B PROPOSED CHANGES TO THE I-CODES ALBUQUERQUE COMMITTEE ACTION HEARINGS

2019 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2018 EDITIONS OF THE GROUP B INTERNATIONAL CODES

Search on the terms “day care” and “daycare” to get a sample of the prevailing concepts; use of such facilities as storm shelters, for example.

“The Country School” | Winslow Homer

We encourage our safety and sustainability colleagues to participate directly in the ICC Code Development process.   We slice horizontally through the disciplinary silos (“incumbent verticals”) created by hundreds of consensus product developers every week and we can say, upon considerable authority that the ICC consensus product development environment is one of the best in the world.  Privately developed standards (for use by public agencies) is a far better way to discover and promulgate leading practice than originating technical specifics from legislative bodies.   CLICK HERE to get started.  Contact Kimberly Paarlberg (kpaarlberg@iccsafe.org) for more information.

There are competitor consensus products in this space — Chapter 18 Day-Care Occupancies in NFPA 5000 Building Construction and Safety Code, for example; a title we maintain the standing agenda of our Model Building Code teleconferences.   It is developed from a different pool of expertise under a different due process regime.   See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-166]

Category: Architectural, Healthcare Facilities, Facility Asset Management

Colleagues: Mike Anthony, Jim Harvey, Richard Robben


Several names for this occupancy class:

  1. Nursery
  2. Crèche
  3. Playgroup
  4. Montessori
  5. Preschool
  6. Kindergarten
  7. Childcare
  8. Toddler group
  9. Daycare
  10. Early learning center

A Study of Children’s Password Practices

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content