Tag Archives: Spring


Lightning Protection Systems

“Benjamin Franklin Drawing Electricity from the Sky” 1816 Benjamin West

Seasonal extreme weather patterns in the United States, resulting in damages to education facilities and delays in outdoor athletic events — track meets; lacrosse games, swimming pool closures and the like — inspire a revisit of the relevant standards for the systems that contribute to safety from injury and physical damage to buildings: NFPA 780 Standard for the Installation of Lightning Protection Systems


To paraphrase the NFPA 780 prospectus:

  • This document shall cover traditional lightning protection system installation requirements for the following:
       (1) Ordinary structures

       (2) Miscellaneous structures and special occupancies
       (3) Heavy-duty stacks
       (4) Structures containing flammable vapors, flammable gases, or liquids with flammable vapors
       (5) Structures housing explosive materials
       (6) Wind turbines
       (7) Watercraft
       (8) Airfield lighting circuits
       (9) Solar arrays
  • This document shall address lightning protection of the structure but not the equipment or installation requirements for electric generating, transmission, and distribution systems except as given in Chapter 9 and Chapter 12.

(Electric generating facilities whose primary purpose is to generate electric power are excluded from this standard with regard to generation, transmission, and distribution of power.  Most electrical utilities have standards covering the protection of their facilities and equipment. Installations not directly related to those areas and structures housing such installations can be protected against lightning by the provisions of this standard.)

  • This document shall not cover lightning protection system installation requirements for early streamer emission systems or charge dissipation systems.

Related grounding and bonding  requirements appears in Chapters 2 and Chapter 3 of NFPA 70 National Electrical Code.  This standard does not establish evacuation criteria.  

The current edition is dated 2023 and, from the transcripts, you can observe concern about solar power and early emission streamer technologies tracking through the committee decision making.  Education communities have significant activity in wide-open spaces; hence our attention to technical specifics.

2023 Public Input Report

2023 Public Comment Report

Public input on the 2026 revision is receivable until 1 June 2023.

We always encourage our colleagues to key in their own ideas into the NFPA public input facility (CLICK HERE).   We maintain NFPA 780 on our Power colloquia which collaborates with IEEE four times monthly in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Lightning flash density – 12 hourly averages over the year (NASA OTD/LIS) This shows that lightning is much more frequent in summer than in winter, and from noon to midnight compared to midnight to noon.

Issue: [14-105]

Category: Electrical, Telecommunication, Public Safety, Risk Management

Colleagues: Mike Anthony, Jim Harvey, Kane Howard


Installing lightning protection system for your facility in 3 Steps (Surge Protection)

IEEE Education & Healthcare Facility Electrotechnology

Preserving the Maine Harvest: Freezing Rhubarb and Greens

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

“What Wondrous Love”














The authorship of the hymn “What Wondrous Love Is This?” is unknown, and it is believed to be a traditional American folk hymn that emerged in the early 19th century. The hymn is sometimes attributed to American composer and music educator William Walker, who included it in his songbook “Southern Harmony” in 1835.   It has  become a beloved hymn in many Christian traditions, particularly during the season of Lent and Holy Week, as it helps worshippers reflect on the depth and meaning of Jesus Christ’s sacrifice.

History of Western Civilization Told Through the Acoustics of its Worship Spaces

Standards Minnesota

St. Olaf Facilities Department

Spring Equinox

The Earth’s precession is a slow, cyclical motion of the rotational axis that causes the position of the celestial poles to change over time. This motion is caused by the gravitational influence of the Moon and Sun on the Earth’s equatorial bulge, and it has a period of about 26,000 years.

Over astronomical time, the Earth’s precession has caused a number of changes in the position of the stars and constellations in the sky. For example, due to precession, the position of the North Star, or Polaris, has shifted over time, and in ancient times, other stars, such as Thuban, were used as celestial markers for navigation. Additionally, precession can cause changes in the length and timing of the seasons over long timescales.

The Earth’s precession is affected by a number of factors, including the gravitational pull of other planets, the shape of the Earth’s orbit around the Sun, and the distribution of mass within the Earth itself. These factors can cause slight variations in the rate and direction of precession over time.

Overall, while the effects of precession on the Earth’s rotation and position in the sky are not easily observable on human timescales, they are an important component of the Earth’s long-term astronomical behavior.

Gallery: Other Ways of Knowing Climate Change

Storm Shelters

“Landscape between Storms” 1841 Auguste Renoir


When is it ever NOT storm season somewhere in the United States; with several hundred schools, colleges and universities in the path of them? Hurricanes also spawn tornadoes. This title sets the standard of care for safety, resilience and recovery when education community structures are used for shelter and recovery.  The most recently published edition of the joint work results of the International Code Council and the ASCE Structural Engineering Institute SEI-7 is linked below:

2020 ICC/NSSA 500 Standard for the Design and Construction of Storm Shelters.

Given the historic tornados in the American Midwest this weekend, its relevance is plain.  From the project prospectus:

The objective of this Standard is to provide technical design and performance criteria that will facilitate and promote the design, construction, and installation of safe, reliable, and economical storm shelters to protect the public. It is intended that this Standard be used by design professionals; storm shelter designers, manufacturers, and constructors; building officials; and emergency management personnel and government officials to ensure that storm shelters provide a consistently high level of protection to the sheltered public.

This project runs roughly in tandem with the ASCE Structural Engineering Institute SEI-17 which has recently updated its content management system and presented challenges to anyone who attempts to find the content where it used to be before the website overhaul.    In the intervening time, we direct stakeholders to the link to actual text (above) and remind education facility managers and their architectural/engineering consultants that the ICC Code Development process is open to everyone.

The ICC receives public response to proposed changes to its products at the link below:

Standards Public Forms

You are encouraged to communicate with Kimberly Paarlberg (kpaarlberg@iccsafe.org) for detailed, up to the moment information.  When the content is curated by ICC staff it is made available at the link below:


We maintain this title on the agenda of our periodic Disaster colloquia which approach this title from the point of view of education community facility managers who collaborate with structual engineers, architects and emergency management functionaries..   See our CALENDAR for the next online meeting, open to everyone.


FEMA: Highlights of ICC 500-2020

ICC 500-2020 Standard and Commentary: ICC/NSSA Design and Construction of Storm Shelters

IEEE: City Geospatial Dashboard: IoT and Big Data Analytics for Geospatial Solutions Provider in Disaster Management



Vårpensum uke 20 | 15. mai – 21. mai

17 May | Norwegian Constitution Day 2023

mandag | 15. mai | Kollokvium 15:00 UTC

Health 400


tirsdag | 16. mai | Kollokvium 15:00 UTC

“Backup” Power Systems


onsdag | 17. mai | Kollokvium 15:00 UTC



torsdag | 18. mai | Kollokvium 15:00 UTC



fredag | 19. mai | Kollokvium 15:00 UTC

Bucolia 400

Lørdag | 20. mai

søndag | 21. mai

Looking Ahead: Weeks 2023

World Clock

Crop Calendar Charts

List of multinational festivals and holidays

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content