Transmission Line Right-of-Way

Edison's Pearl Street Station in New York City, which began operating in 1882 utilized overhead wires to distribute electricity to nearby customers. However, Edison's DC power system faced limitations in transmitting electricity over longer distances due to significant power loss. Edison took his inspiration from Samuel Morse's success with telegraph overhead wiring, albeit at much lower voltages.

Loading
loading...

Transmission Line Right-of-Way

August 7, 2023
mike@standardsmichigan.com

 

Optimization of Transmission Line Right-of-Way

Ajaykumar Patel, et. al

School of Engineering & Technology, Central Queensland University, Melbourne, Australia

 

Abstract: A specific land is required to design the transmission line to construct effectively and maintain properly is called right of way of transmission line. It is calculated by considering mainly three electrical quantity related transmission line such as electric field, magnetic field and radio interference. Corona effect is considered for the evolution of right of way. By considering these parameters, it provide idea related to effect surrounding the area nearby transmission line.

The determination of transmission line right of way for public electric utilities typically involves a combination of legal considerations, regulatory requirements, environmental assessments, and public engagement: 

Planning and Route Selection: Public electric utilities assess their power transmission needs based on factors such as population growth, energy demand, and infrastructure upgrades. They consider various potential routes and alternatives, taking into account factors like terrain, existing infrastructure, land use, and environmental sensitivities.

Environmental and Impact Assessments: Utilities conduct environmental and impact assessments to evaluate the potential effects of the proposed transmission line routes. These assessments examine factors such as wildlife habitats, endangered species, wetlands, water bodies, cultural or historical sites, and scenic landscapes. The purpose is to identify potential impacts and propose mitigation measures.

Regulatory and Permitting Process: Public utilities must comply with applicable laws and regulations governing transmission line development. This includes obtaining necessary permits and approvals from relevant regulatory agencies at the federal, state, and local levels. The requirements vary depending on the jurisdiction, but they often involve environmental agencies, land management agencies, and public utility commissions.

Public Engagement and Consultation: Utilities engage in public consultation and outreach to gather feedback from affected communities, landowners, and stakeholders. They conduct public hearings, open houses, and meetings to inform the public about the project, address concerns, and consider alternative routes suggested by the community. This engagement helps ensure transparency and public input in the decision-making process.

Negotiations and Eminent Domain: Utilities negotiate with landowners along the proposed transmission line route to acquire the necessary right of way. In some cases, if an agreement cannot be reached, utilities may exercise eminent domain, which is a legal process that allows them to acquire the land for public use while providing just compensation to the affected landowner.

Legal Framework: The legal framework for determining transmission line right of way varies by jurisdiction. Laws related to land use, zoning, environmental protection, and eminent domain play a role in defining the process and requirements for securing right of way.

Procedures vary depending on the country, state, or region where the transmission line is being developed. Local regulations, environmental conditions, and public engagement practices will influence the overall process.

Related:

Optimization of Transmission Line Right-of-Way

Reducing the duration of right-of-way acquisition process for high voltage transmission power lines projects

Diminishing the Right of Way (RoW) With Multi Voltage Multi Terminal Transmission Tower

Information System for the Vegetation Control of Transmission Lines Right-of-way

Partially underground transmission circuits: safety issue for current and future power systems

2023 National Electrical Safety Code

IEEE Guide to the Installation of Overhead Transmission Line Conductors, IEEE Std. 524, 1992

Pacific Gas & Electric: Overhead Transmission Line Design Criteria

US Department of Agriculture Rural Utilities Service: Design Manual for High Voltage Transmission Lines

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content