Tag Archives: D2

Loading
loading..

Infotech 200

Today we break down the literature for building, maintaining and supporting the computing infrastructure of education communities.  We use the term “infotech” gingerly to explain action for a  broad span of technologies that encompass enterprise servers and software, wireless and wired networks, campus phone networks, and desktop computers that provide administrative services and career tech video production.   The private sector has moved at light speed to respond to the circumstances of the pandemic; so have vertical incumbents evolving their business models to seek conformance revenue in this plasma-hot domain.

Starting 2023 we break down the topic accordingly:

Infotech 100: Survey of the principal standards developing organizations whose catalogs are incorporated by reference into federal and state legislation.  Revision cycles.

Infotech 200: Campus computing facilities for research and education

Infotech 300: Communication networks, wired and unwired at the demarcation point; crucial for defining the responsibilities and boundaries between the service provider and the customer.

Infotech 400:  System, middleware and software — Python, Fortran 2018, Apache, Julia, C++ and others

Infotech 300

We collaborate closely with the IEEE Education and Healthcare Electrotechnology Committee.  Use the login credentials at the upper right of our home page.

Internet of Small Things

Freely Available ICT Standards

2023 National Electrical Safety Code

 

 

“Theory is when you know everything but nothing works.

Practice is when everything works but no one knows why.

In our lab, theory and practice are combined: nothing works,

and no one knows why.”

—  Charles Proteus Steinmetz

Nikola Tesla, with his equipment

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Electrical Power System Research

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

The 2023 revision incorporates the new battery technologies and addresses energy storage; backup power, 5G communication technology infrastructure among other adaptations.   A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

 

Research Tracks:

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

Relevant Technical Literature

Standards:

Guide for Overhead Alternating Current (AC) Transmission Line Design | Comments Due February 2

Guide for Collecting and Managing Transmission Line Inspection and Maintenance Data | Comments Due February 5

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

Guide for Live-Working Robots for Electric Distribution Systems: Comments by September 25th

August 14, 2003 Power Outage at the University of Michigan

Guide for the Application of Quick Response Systems of Customer-Side Loads in Modern Power Grids – Comments Due August 5

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Outdoor Deicing & Snow Melting

“Snow at Argenteuil” | Claude Monet (1875)

Today our focus turns to outdoor electric deicing and snow melting wiring systems identified as suitable for the environment and installed in accordance with the manufacturer’s instructions.  They work silently to keep snow load from caving in roofs and icicles falling from gutters onto pedestrian pathways.

While the voltage and ampere requirement of the product itself is a known characteristic, the characteristic 0f the wiring pathway — voltage, ampere, grounding, short circuit, disconnect and control — is relatively more complicated and worthy of our attention.   Articles 426-427 of the National Electrical Code is the relevant part of the NEC

Free Access 2023 National Electrical Code

Insight into the ideas running through technical committee deliberations is provided by a review of Panel 17 transcripts:

2023 NEC Panel 17 Public Input Report (633 pages)

2023 NEC Panel 17 Public Comment Report (190 pages)

We hold Articles 427 in the middle of our priority ranking for the 2023 NEC.   We find that the more difficult issues for this technology is the determination of which trade specifies these systems — architectural, electrical, or mechanical; covered in previous posts.   Instead, most of our time will be spent getting IEEE consensus products in step with it, specifically ANSI/IEEE 515 and IEEE 844/CSA 293.

Comments on the First Draft of the 2026 NEC will be received until August 28th.

454c656374726f746563686e6f6c6f6779

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with IEEE Standards Coordinating Committee 18 whose members are charged by the IEEE Standards Association to coordinate NFPA and IEEE consensus products.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer


LEARN MORE:

IEEE Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Heat Tracing for Commercial Applications

844.2/CSA C293.2-2017 – IEEE/CSA Standard for Skin Effect Trace Heating of Pipelines, Vessels, Equipment, and Structures–Application Guide for Design, Installation, Testing, Commissioning, and Maintenance

 

Healthcare Facilities Code

“The Doctor”  1891 Sir Luke Fildes

The NFPA 99 Healthcare Facilities Code committee develops a distinct consensus document (i.e. “regulatory product”) that is distinct from National Electrical Code Article 517; though there are overlaps and gaps that are the natural consequence of changing technology and regulations.  It is worthwhile reviewing the scope of each committee:

NFPA 99 Scope: This Committee shall have primary responsibility for documents that contain criteria for safeguarding patients and health care personnel in the delivery of health care services within health care facilities: a) from fire, explosion, electrical, and related hazards resulting either from the use of anesthetic agents, medical gas equipment, electrical apparatus, and high frequency electricity, or from internal or external incidents that disrupt normal patient care; b) from fire and explosion hazards; c) in connection with the use of hyperbaric and hypobaric facilities for medical purposes; d) through performance, maintenance and testing criteria for electrical systems, both normal and essential; and e) through performance, maintenance and testing, and installation criteria: (1) for vacuum systems for medical or surgical purposes, and (2) for medical gas systems; and f) through performance, maintenance and testing of plumbing, heating, cooling , and ventilating in health care facilities.

NFPA 70 Article 517 Scope:  The provisions of this article shall apply to electrical construction and installation criteria in healthcare facilities that provide services to human beings.  The requirements in Parts II and III not only apply to single-function buildings but are also intended to be individually applied to their respective forms of occupancy within a multi-function building (e.g. a doctor’s examining room located within a limited care facility would be required to meet the provisions of 517.10)   Informational Note: For information concerning performance, maintenance, and testing criteria, refer to the appropriate health care facilities documents.

In short, NFPA 70 Article 517 is intended to focus only on electrical safety issues though electrotechnology complexity and integration in healthcare settings (security, telecommunications, wireless medical devices, fire safety, environmental air control, etc.) usually results in conceptual overlap with other regulatory products such as NFPA 101 (Life Safety Code) and the International Building Code.

Several issues were recently debated by the Article 517 technical committee during the 2023 National Electrical Code Second Draft meetings

  • The conditions under which reconditioned electrical equipment be installed in healthcare settings; contingent on listing and re-certification specifics.
  • Relaxation of the design rules for feeder and branch circuit sizing through the application of demand factors.
  • Application of ground fault circuit interrupters.
  • “Rightsizing” feeder and branch circuit power chains (Demand factors in Section 517.22)
  • Patient care space categories
  • Independence of power sources (517.30)

There are, of course, many others, not the least of which involves emergency management.  For over 20 years our concern has been for the interdependency of water and electrical power supply to university hospitals given that many of them are part of district energy systems.

We need to “touch” this code at least once a month because of its interdependence on other consensus products by other standards developing organizations.  To do this we refer NFPA 99 standards action to the IEEE Education & Healthcare Facilities Committee which meets online four times monthly in European and American time zones.

The transcript of NEC Article 517 Public Input for the 2023 revision of NFPA 70 is linked below.  (You may have to register your interest by setting up a free-access account):

Code-Making Panel 15 (NEC-P15) Public Input Report

Code-Making Panel 15 (NEC-P15) Public Comment Report

Technical committees will meet in June to endorse the 2023 National Electrical Code.

Public consultation on the Second Draft closes May 31st. Landing page for selected sections of the 2024 revision  of NFPA 99 are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

Second Draft Comments are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

NITMAM closing date: March 28, 2023

We break down NFPA 70 and NFPA 99 together and keep them on the standing agenda of both our Power and Health colloquia; open to everyone.  See our CALENDAR for the next online meeting.

Germany

Issues: [12-18, [15-97] and [16-101]

Contact: Mike Anthony, Jim Harvey, Robert Arno, Josh Elvove, Joe DeRosier, Larry Spielvogel

NFPA Staff Liaison: Jonathan Hart

Archive / NFPA 99

 

 

 

Kahn Health Care Pavilion

Our tenure in the 2026 National Electrical Code will result in at least a 10 percent reduction in the cost of building premise wiring — (mostly in the feeder power chain) — in healthcare facilities; based on the results of last month’s meeting of Code Making Panel 15.

Assuming electrical power infrastructure is 15 percent of in a $920 million facility like this (excluding interior moveable fixtures), that would have meant an approximate $14 million reduction in cost.  That cost savings cannot be realized because it was designed to an earlier version of the National Electrical Code.

Facilities and Operations

National Electrical Code CMP-15

Healthcare Facilities Code

Hospital Plug Load


Related:

New University of Michigan hospital to be named after philanthropists D. Dan and Betty Kahn

ORT America

$920M Michigan Medicine tower tops out, targets 2025 opening

 

Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

Telephone, telegraph, and power lines over the streets of New York City 1888

 

Guide for the Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

 

Abstract: This guide identifies the mechanisms and an analytic approach for developing consistent rules, agreements, and/or methodologies for the evaluation and inter-entity cooperation managing pole attachments on utility infrastructure that can contain both electric supply as well as communications wireline and wireless facilities.

The common safety codes and accepted good industry practices for joint use are referenced, including items such as clearances and strength/loading requirements, appropriate work rules during installation, maintenance and restoration, and general guidelines. The considerations within this guide can be used to help perform a detailed assessment of attachment installations where communications antennas and related wireline and wireless equipment are to be co-located on joint use structures.

Scope: This guide provides recommendations for the development of consistent guides, agreements, and/or methodologies for the evaluation and inter-company cooperation on managing pole attachments on Electric Utility infrastructure.

Purpose: The Joint Use Guide documents consistent approaches, methodologies and rules for the sharing and co-location of equipment with electric Transmission & Distribution (T&D) facilities for communications such as antennae and/or cable. With the emergence of new communications networks and emerging technologies which depend on widely distributed communications {e.g. 5G and Internet of Things ( IoT)}, the needs of vertical real-estate for use in communications is expected to dramatically increase in the coming years. While electric T&D facilities provide an excellent platform to help meet these needs, there are significant safety and reliability issues associated with their use.
Related:

2023 National Electrical Safety Code

2026 National Electrical Code Workspace

Energy Standard for *Sites* and Buildings

ANSI Standards Action: February 2, 2024

“Student Painting Competition” (2013) Rida Maryam Qureshi United States Agency for International Development

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

No redlines relevant to our work are open for comment at this time.  

Education industry facility managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content