Author Archives: mike@standardsmichigan.com

Loading
loading...

Fire Safety

“Creation of humanity by Prometheus as Athena looks on”

Fire safety leadership usually finds itself involved in nearly every dimension of risk on the #WiseCampus; not just the built environment but security of interior spaces with combustibles but along the perimeter and within the footprint of the education community overall.

The Campus Fire Marshal, for example, usually signs the certificate of occupancy for a new building but may be drawn into meetings where decisions about cybersecurity are made.   Fire protection systems coincide with evacuation systems when there is no risk and both may be at risk because of cyber-risk.

The job description of a campus fire safety official is linked below offers some insight into why fire safety technologies reach into every risk dimension:

University of California Santa Cruz Office of Emergency Services

University of Tennessee Emergency Service Training

The development of the highest level fire safety consensus product in the world is led by the British Standards Institute, under the administration of the International Standardization Organization, with Committee E05 on Fire Standards of  ASTM International as the US Technical Advisory Group Administrator.  The business plan and the map of global participants is linked below:

BUSINESS PLAN ISO/TC 92 Fire safety EXECUTIVE SUMMARY

The consensus products developed by TC 92 are intended to save lives, reduce fire losses, reduce technical barriers to trade, provide for international harmonization of tests and methods and bring substantial cost savings in design. ISO/TC 92 standards are expected to be of special value to developing countries, which are less likely to have national standards.  As with all ISO standards, the TC 92 consensus product is a performance standard suitable for use in prescriptive regulations and provide for a proven route to increased fire safety.

We do not advocate in this standard at the moment; we only track it.  The International Fire Code and the Fire Code have been our priorities since 2006.  The fire safety space is well populated with knowledgeable facility professionals because conformity budgets in the fire safety world — i.e. the local or state fire marshal — usually has a budget.  When you have a budget you usually have people keeping pace with best practice.

We encourage our colleagues in the United States on either the business or academic side of the education facility industry to communicate directly with ANSI’s ISO Team and/or the ASTM Contact: Tom O’Toole, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 Phone: (610) 832-9739, Email: totoole@astm.org

We maintain this title on the agenda of our periodic Global and Prometheus colloquia.  See our CALENDAR for the next online meeting;  open to everyone.

Issue: [19-104]

Category: Fire Safety, Fire Protection, International

Contact: Mike Anthony, Joe DeRosier, Alan Sactor, Joshua Elvove, Casey Grant

More:

The Challenges of Storage and Not Enough Space, Alan Sactor

Life Safety Code

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

Reliability Analysis for Power to Fire Pumps

Reliability Analysis for Power to Fire Pump Using Fault Tree and RBD

Robert Schuerger | HP Critical Facilities

Robert Arno | ITT Excelis Information Systems

Neal Dowling | MTechnology

Michael  A. Anthony | University of Michigan

 

Abstract:  One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.

 

 

CLICK HERE to order complete paper

Ice Cream at the Rock

Michigan Central

The invention of ice cream, as we know it today, is a product of historical evolution, and there isn’t a single individual credited with its creation. Various cultures and civilizations throughout history have contributed to the development of frozen treats resembling ice cream.

One of the earliest records of frozen desserts can be traced back to ancient China, where people enjoyed a frozen mixture of milk and rice around 200 BC. Similarly, ancient Persians and Arabs had a tradition of mixing fruit juices with snow or ice to create refreshing treats.

In Europe, frozen desserts gained popularity in the 17th and 18th centuries, and it was during this time that the more modern version of ice cream, made with sweetened milk or cream, began to take shape. During this period, ice cream became more widely accessible and enjoyed by the nobility and upper classes.



MSU Extension: Dairy Store

MSU Infrastructure Planning and Facilities

To produce ice cream on a commercial scale, several key pieces of infrastructure and equipment are necessary. The specific requirements may vary depending on the production capacity and the type of ice cream being produced, but the basic infrastructure typically includes:

  1. Manufacturing Facility: A dedicated space or building is needed to house all the production equipment and storage facilities. The facility should comply with local health and safety regulations and be designed to maintain the required temperature and hygiene standards.
  2. Mixing and Blending Equipment: Industrial-scale mixers and blending machines are used to mix ingredients like milk, cream, sugar, stabilizers, emulsifiers, and flavorings. These machines ensure that the mixture is homogenized and consistent.
  3. Pasteurization Equipment: To ensure product safety and extend shelf life, ice cream mix needs to be pasteurized. Pasteurization equipment heats the mixture to a specific temperature and then rapidly cools it to destroy harmful microorganisms.
  4. Homogenizers: Homogenizers help break down fat molecules in the ice cream mix to create a smoother and creamier texture.
  5. Aging Vats: The ice cream mix is aged at a controlled temperature for a specific period, which allows the ingredients to fully blend and improves the ice cream’s texture.
  6. Freezers: Continuous freezers or batch freezers are used to freeze the ice cream mix while incorporating air to create the desired overrun (the amount of air in the final product). Continuous freezers are more commonly used in large-scale production, while batch freezers are suitable for smaller batches.
  7. Hardening and Storage Room: Once the ice cream is frozen, it needs to be hardened at a lower temperature to achieve the desired texture. Storage rooms are used to store finished ice cream at the appropriate temperature until distribution.
  8. Packaging Equipment: Equipment for filling and packaging the ice cream into various containers, such as cartons, tubs, or cones.
  9. Quality Control and Laboratory Facilities: A dedicated area for quality control testing, where ice cream samples are analyzed for consistency, flavor, and other characteristics.
  10. Cleaning and Sanitation Systems: Proper cleaning and sanitation systems are essential to maintain hygiene and prevent contamination.
  11. Utilities: Adequate water supply, electrical power, and refrigeration capacity are critical for ice cream production.

Food Code 2017

Food 500

Ædificare

United States: Schools of Architecture

The Financial Impact of Architectural Design: Balancing Aesthetics and Budget in Modern Construction

LIVE

Homeschooling

New from American School & University:

Lehman College: Nursing Education, Research and Practice Center 

Vincennes University breaks ground on $33.9 million health sciences center

$40 million arena renovation planned at Furman University

Colgate University is building apartments geared for faculty and staff

“Architect at his drawing board” 1893 Teknisk Ukeblad Norway

As reported by the US Department of Commerce Census Bureau the value of construction put in place by April 2023 by the US education industry proceeded at a seasonally adjusted annual rate of $110.168 billionThis number does not include renovation for projects under 50,000 square feet and new construction in university-affiliated health care delivery enterprises.   Reports are released two months after calendar month.  The complete report is available at the link below:

MONTHLY CONSTRUCTION SPENDING, March 2024

This spend makes the US education facilities industry (which includes colleges, universities, technical/vocational and K-12 schools, most university-affiliated medical research and healthcare delivery enterprises, etc.) the largest non-residential building construction market in the United States after commercial property; and fairly close.  For perspective consider total public + private construction ranked according to the tabulation most recently released:

$128.487 billion| Education Facilities

$132.860 billion | Power

$67.773 billion | Healthcare

Keep in mind that inflation figures into the elevated dollar figures.  Overall — including construction, energy, custodial services, furnishings, security. etc., — the non-instructional spend plus the construction spend of the US education facilities is running at a rate of about $300 – $500 billion per year.

Construction cameras at US schools, colleges and universities

We typically pick through the new data set; looking for clues relevant to real asset spend decisions.  Finally, we encourage the education facilities industry to contribute to the accuracy of these monthly reports by responding the US Census Bureau’s data gathering contractors.

Reconstruction of Ancient Agora

More

National Center for Educational Statistics

AIA: Billings Index shows but remains strong May 2022

National Center for Education Statistics

Sightlines: Capital Investment College Facilities

OxBlue: Time-Lapse Construction Cameras for Education

Architectural Billing Index

IBISWorld Education Sector

US Census Bureau Form F-33 Survey of School System Finances

American School & University

 

Carnegie Classifications

American Vitruvius

University of Michigan North Quad

Robert A. M. Stern is an American architect, educator, and author known for his contributions to the field of architecture, urbanism, and design. Stern has been particularly influential in shaping the aesthetics of educational campuses through his architectural practice and academic involvement. Here are some key aspects of his approach to the aesthetics of educational campuses that attract philanthropic legacies:

  1. Pedagogical Ideals:
    • Stern’s designs for educational campuses often reflect his understanding of pedagogical ideals. He considers the spatial organization and layout of buildings in relation to the educational mission of the institution.
    • Spaces are designed to foster a sense of community, encourage interaction, and support the overall educational experience.
  2. Traditional and Classical Influences:
    • Stern is known for his commitment to classical and traditional architectural styles. He often draws inspiration from historical architectural forms and traditional design principles.
    • His work reflects a belief in the enduring value of classical architecture and its ability to create a sense of timelessness and continuity.
  3. Contextual Design:
    • Stern emphasizes the importance of contextual design, taking into consideration the existing architectural context and the cultural or historical characteristics of the surrounding area.
    • When designing educational campuses, he often seeks to integrate new buildings harmoniously into the existing campus fabric.
  4. Attention to Detail:
    • Stern is known for his meticulous attention to detail. His designs often feature carefully crafted elements, including ornamental details, materials, and proportions.
    • This focus on detail contributes to the creation of visually rich and aesthetically pleasing environments.
  5. Adaptation of Historical Forms:
    • While Stern’s work is firmly rooted in traditional and classical architecture, he also demonstrates an ability to adapt historical forms to contemporary needs. His designs often feature a synthesis of timeless architectural elements with modern functionality.

Hammurabi

Group A Model Building Codes

Americas Infrastructure Report Card

CLICK IMAGE TO START CIVIL ENGINEERING ACADEMY VIDEO

Group A Model Building Codes

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Click to launch LIVECAST

2024 International Building Code

2024 / 2025 / 2026 Code Development: Group A (2024)

Ahead of the April 7-16 Committee Action Hearings in Orlando for the Group A tranche of titles in the ICC catalog we will examine the transcripts linked below:

International Building Code (Occupancy Classification and Use)

Educational Group E
Note that there is a great deal of nuance in the definitions for healthcare and research-related occupancies

International Building Code (Electrical)

Emergency and Standby Power Systems

Lightning Protection Systems

IBC Chapter 27 Proposal

International Building Code (Fire Safety)

International Existing Building Code

International Fire Code

International Mechanical Code

International Performance Code for Buildings and Facilities

International Plumbing Code

International Property Maintenance Code

International Swimming Pool and Spa Code

International Zoning Code

We will examine safety and sustainability concepts tracking in the monographs linked below:

2021 / 2022 Code Development: Group A

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

2021 GROUP A PUBLIC COMMENT AGENDA (1425 Pages)

There are over 100 concepts “in play”; a partial list appears below:

423.5.2 Location of schools used as storm shelters.

423.4.1 Required Occupant Capacity in storm shelters

917.1 Requirement for mass notification studies for colleges and universities.

403.3.6 Door locking.

1003.3.1 Fat, oil and grease receptors in kitchens.

Sections 403.1.1 and 403.2.  Minimum number of plumbing fixtures in various occupancy classifications and how many genders.

1110.3 Adult Changing Stations.

410.4.1 Performance theater actor changing room separation from stage.

1202.7 Soil Gas Control.  Radon levels in schools.

1204.1.1 Percentage of natural light in classrooms.

321.1 Artificial combustible vegetation on roofs and near buildings.

907.2.1 Manual fire alarm pull stations located at outdoor stadium bleachers

915.2.3 4 Carbon monoxide detectors in Group E occupancies.

501.1 Accessory dwelling units in residential zones

801.2.3.1 Accessory dwelling unit parking.

We will have time to sort through them, assign priorities and prepare proposals based upon colloquia over the next few weeks.  Use the login credentials at the upper right of our home page.

April 30, 2023 Update of the New ICC Code, Standard and Guideline Process

Minimum Design Loads and Associated Criteria for Buildings and Other Structures



Updated: September 13

(Original Post: April 12, 2021)

 

During today’s colloquium we will review all of the concepts tracking in the Group A tranche relevant to student housing facilities owned by the college, university or school district; soon to be discussed during the Committee Action Hearings starting September 22nd.   There are quite a few so we will likely not have time to cover best practice titles for off-campus housing; a sensitive area.  We will set a separate colloquium for this topic in early 2022.

Group A Committee Action Hearings begin September 22nd and we will provide a link to the ICC livestream every day.


Updated: August 17, 2021

(Original Post: April 12, 2021)

During today’s colloquium on fire safety we will review all of the concepts tracking in the Group A tranche; soon to be discussed during the Committee Action Hearings starting September 22nd.

 


July 12th

For today’s colloquium on elevators and lifts we will review the following concepts tracking in the Group A tranche:

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

Keep in mind that most of these failed as stand-alone proposals but will likely inform decisions on related proposals; at least administratively.

Continuation of the Group A Code Development may be tracked below:

2021/2022 Code Development Cycle

You may key in your own responses starting HERE.

The ICC catalog informs a large part of our own agenda so we deal with titles within it nearly every day on nearly every issue.  For example, we will track interaction of Article 620 of the National Electrical Code, Chapter 7 of the Life Safety Code, and Chapter 30 Elevators and Conveying Systems in the International Building Code


June 14

For today’s colloquium — a review of the construction spend rate — today note the following:

Table of Contents identifying administration of the Group A revision cycle

For the Nurse & Dentist colloquium today we note the following:

We find most of the discussion centered on nursing home safety concepts; a focus area given the circumstances of the pandemic.   Public comment closes the end of this week.

For the Lively Arts colloquium today we note the following:

  • Fire hazard associated with theatrical lighting and assembly construction materials.
  • Gender sensitive water closet count in theaters and assembly areas
  • Schools as storm shelters

For the Housing colloquium earlier this month we examined the report linked below for concepts related to student housing facilities in these three groups:

  • University-owned dormitories
  • Student residences owned by the private sector; a very large market now
  • Privately-owned off-campus housing in close proximity to educational campuses

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

Consultation closes July 2nd.

We will also examine related concepts tracking through the NFPA and ASHRAE catalog.


June 9

What got through?  The complete monograph is linked below.  We will be picking through these one-by-one, topic-by-topic, according to the topics of our daily colloquia ahead of the July 2nd deadline:

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

– G97-21: Exception expansion for occupant capacity when schools are used as storm shelters

– G35-21 Table 307 Hazardous materials in higher education laboratories

– F105-21 Risk assessments for mass notification system scope expansion for younger children

– Others regarding healthcare settings too nuanced and complex to describe briefly here….

Generally speaking, most of the proposals briefly identified below were rejected.

CLICK HERE to comment directly.   Join us any day at 15:00 UTC


May 24

CLICK HERE for the Results of Committee Action Hearings on the 2021 proposed changes to the international codes.  You may key in your own comments on these results into ICC’s cdpACCESS Code Development System until July 2nd.  Public Comment Hearings run from September 22 through September 29th according to the ICC 2021/2022 Group A Code Development schedule.


April 12

The International Code Council will host public hearings on its Group A Codes, many of which will affect education community safety and sustainability.  The proposals on the docket of the various committee meetings are relevant to every topic on our daily colloquia (See CALENDAR).  We will be attending these meetings and discussing proposals and decisions in this first part of ICC’s code development process.  The transcript of the complete monograph is linked below:

2021 GROUP A PROPOSED CHANGES TO THE I-CODES (2306 Pages)

We will be referring to this transcript every day for the next month.  CLICK THE IMAGE BELOW TO START LIVECAST STREAM.

VIEW ONLY WEBCAST

Proposals to watch:

IPC § 403.1.1 | P26-21 | Calculation method revision for plumbing fixtures for sporting arenas

IFC § 304 et. al | F9-21 | Waste container concepts

IFC § 304.1 | F8-21 | Valet waste concepts in R-2 occupancies

ICCPC § 1205 | PC15-21 | Non-potable and grey-water recycling

IFC § 805.2 | G3-21 | Wastebaskets and linen containers in Group I-1, I-2, etc

IBC § 713.13.4 | FS57-21 | Chute discharge rooms in recycling or laundry areas

IBC § 503.1 | G104-21 | Rooftop photovoltaic systems.

IBC § 1105.1.1 | E116-21 | Power-operated doors at public entrances.  (Electrification of building openings gathers pace.  Remember the good old days when you simply reached for the doorknob?)

IBC § 716.2.6.1, et al | FS85-21 | Fire doors in storm shelters

IBC § 202, et. al | G94-21 | Expansion of storm shelter concepts to “severe windstorms”

IFC § 304.3, et al | F9-21 | 304.3.7 Waste containers with a capacity of 20 gallons or more in Group R-2 college and university dormitories.

IBC § 1213, et al | G172-21 | Stanchions and grab bars (student dormitories and healthcare facilities)

IBC § 1109.2.1| E30-21, E31-21, et. al | The intent of this proposal(s) is to allow for ramps to serve as an accessible route off an occupied roof instead of requiring standby power on the elevator for that occupied roof.

IBC § 1109.2.1| E30-21, E31-21, et. al | Related to the above.  Parking garages and self-service storage facilities have extremely low occupancy loads. Increasing the 4-story limit to 6-
stories for when standby power for elevators is required takes this practical difference in uses into account.

IBC § 1109.2.2| E34-21, et. al | Providing the fire department the option for using the elevator for assisted evacuation in any elevator building using fire department recall; with the additional
improvements of standby power (1009.4.1) at five stories and the fire service access elevator protections at 120 feet.

IBC § 1010.2.7| E47-21 | Exceptions for stairway door operability with failure of power supply

IBC § 3301, et. al| G199-21 Part 1 | Fire safety during construction concepts; removal of waste, Site Safety Plan

IBC Section 202, et. al | G110-21 |  Live Fire Training Building(s)

IMC Table 403.3.3 | M21-21 |  Minimum Ventilation Rates for Animal Facilities

IBC § 1004.8, et al| E10-21 |  Concentrated business use areas (such as computer rooms and data processing centers).  See the G99-21 series of proposals for computer rooms.

IFC, et. al| F18-21 |  Closer correlation with NFPA 96 (large administrative changes for O&M of ICT fire protection systems)

IFC § 308.4.1, et al| G44-21 |  Groups R-2 dormitories

IBC § 202 (NEW) | G66-21 |  Electrical mobility definitions

IBC § 1107.2, et al | E124-21 & E125-21 & E126-21 |  Electrical vehicle charging stations for R-2 occupancies.

IBC § 1104 | E11-21 |  Posting of occupant load

IBC § 1009.8| E35-21 |  Two-way emergency communication

IFC § 202 et. al | F69-21| Animal Housing Facility

IPC § 609.3. al | P102-21| Hot handwashing water

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IFC § 911-21 | F119-21| Crosswalk and correlation with NFPA 99 and NFPA 70

IPC § 1003.1 et. al | P131-21| Fat, oil and grease interceptors (for kitchens)

IFC § 903.2 et. al | F65-21| Ambulatory Care facilities

IFC § 917.1, et. al | F105-21| More risk analysis for Group E occupancies

IFC Chapter 9 Fire & Life Safety Systems | F102-21 | State-by-state analysis supporting hottened fire safety requirements

IFC § 202 et. al | F5-21| Occupancy classifications

ICCPC Chapter 3 Design Performance Levels | PC1-21 | Risk Categories for schools and other occupancy types

IBC § 503.2, et. al | G190-21 | Replacement buildings on the same lot

IBC § 1204.1, et. al | G166-21 |  Classrooms Group E natural light

IBC § 423.4.1 | G96-21, et. al | Critical emergency operations; schools as storm shelters; required occupancy capacity

IBC § 1202.7 | G162-21 | Soil gas control systems in new educational buildings

IFC § 1103.9 | F116-21 | Carbon Monoxide detection

IPC § 403.3 | P33-21 | Location of toilet facilities

IPMC Chapter 3 General Requirements | PM10-21 | Accessibility and maintenance

IBC § 1008.1, et. al | E24-21 | Means of egress illumination

IBC § 202 | E26-21 | New definition for energy storage system

IFC § 1203.1.1| E26-21 | New definition for energy storage system

IBC § 1204.1.1 | G165-21 | Classroom natural light criteria

IBC § 1013.5 | E71-21 | Photoluminescent exit signs installation where they can actually be charged

IBC § 1010.2.10 | E49-21| Access control door locking system

IBC § 1010.2.11 | E51-21 and E52-21, et. al | Sensor release of electrically locked egress doors & delayed egress concepts

IBC § 1010.2.15 | E56-21 | Elevator lobby exit access doors

IBC § 1010.2. | E56-21 | Elevator lobby exit access doors

IBC § 1010.12 | E42-21 | Locks and latches

IBC NEW § 202 | 43-21 | New definitions for Automatic Flush Bolt, et. al

IBC § 1010.2.3 | E44-21 | (Door) Hardware height

IBC NEW § 202 | E55-21 | Control vestibules (hospitals)

IBC § 1110.3 NEW | E142-21 | Adult Changing Stations

IBC § 3301| G199-21 Part I | Fire safety during constructionDenver Public Schools

IFC § NEW SECTIONS 203 Occupancy Classification and Use | F5-21 | See Page 1086

IFC § Chapters 1 – 3 | F14-21| Significant changes to administrative chapters

IBC § 410.1 | G73-21| Stage v.  Platform nomenclature with respect to fire load

IBC § 410.2.1| G77-21| Stage fire hazards

IBC § 410.2.1| G79-21| Stage fire hazards

IBC § 423.4 | G96-21| Critical emergency operations; occupant load for storm shelters

IBC § 423.5.1 | G97-21| Occupant load for storm shelters

G99-21 Part II et. al | Definitions of Information & Communications Technology; revisions to Section 429 Information Technology Equipment Facilities

G112-21, et. al| Sleeping lofts (common in student residence halls)

IBC § 505.2.2 | G115-21 Mixed occupancy buildings

IBC § 506.3.2 | G116-21 Minimum building frontage distance

IBC § 302.1 | G121-21 Occupancy classification

IBC § 1210.4 | G174-21 Use of radiant energy to inactivate bacteria

ICCPC § 1401.3.8 | PC16-21 Protection of secondary power services and equipment

IBC § 2701.1.1 | Group I-2 Electrical systems

IBC & IFC G175-21 | Lightning Protection Systems

IBC § 3006.3 |  G184-21 | Elevator hoistway pressure

IBC § 3001.2 |  G175-21 | Elevator communication systems

IBC § 1020.2.1 |  G182-21 | Elevator hoistway fire protection

IBC § 3007.6 |  G187-21 | Elevator corridors and access

IBC APPENDIX Q (NEW) |  G201-21  | Temporary Structures and Used to Serve Emergencies

IFC § 705.5.1 |  FS17-21 | Buildings in a public right-of-way

Much has changed in the ICC code development process–not the least of which is the absence of the Livecast. Today we will examine our own proposals regarding, a) a performance-based electrical design of building interior feeder power chains; b) market-making by incumbents enlivened by the protected class of money that flows into student accommodations on and off campus.

Notes on Group A Codes 2021

Large Language Model Standards

 

Perhaps the World Ends Here | Joy Harjo

 

The world begins at a kitchen table. No matter what, we must eat to live.
The gifts of earth are brought and prepared, set on the table.
So it has been since creation, and it will go on.
We chase chickens or dogs away from it. Babies teethe at the corners. They scrape their knees under it.
It is here that children are given instructions on what it means to be human.
We make men at it, we make women.
At this table we gossip, recall enemies and the ghosts of lovers.
Our dreams drink coffee with us as they put their arms around our children.
They laugh with us at our poor falling-down selves and as we put ourselves back together once again at the table.
This table has been a house in the rain, an umbrella in the sun.
Wars have begun and ended at this table. It is a place to hide in the shadow of terror.
A place to celebrate the terrible victory.
We have given birth on this table, and have prepared our parents for burial here.
At this table we sing with joy, with sorrow. We pray of suffering and remorse. We give thanks.
Perhaps the world will end at the kitchen table, while we are laughing and crying, eating of the last sweet bite.

 

Standards and benchmarks for evaluating large language models (LLMs). Some of the most commonly used benchmarks and standards include:

  1. GLUE (General Language Understanding Evaluation): GLUE is a benchmark designed to evaluate and analyze the performance of models across a diverse range of natural language understanding tasks, such as text classification, sentiment analysis, and question answering.
  2. SuperGLUE: SuperGLUE is an extension of the GLUE benchmark, featuring more difficult language understanding tasks, aiming to provide a more challenging evaluation for models.
  3. CoNLL (Conference on Computational Natural Language Learning): CoNLL has historically hosted shared tasks, including tasks related to coreference resolution, dependency parsing, and other syntactic and semantic tasks.
  4. SQuAD (Stanford Question Answering Dataset): SQuAD is a benchmark dataset for evaluating the performance of question answering systems. It consists of questions posed on a set of Wikipedia articles, where the model is tasked with providing answers based on the provided context.
  5. RACE (Reading Comprehension from Examinations): RACE is a dataset designed to evaluate reading comprehension models. It consists of English exam-style reading comprehension passages and accompanying multiple-choice questions.
  6. WMT (Workshop on Machine Translation): The WMT shared tasks focus on machine translation, providing benchmarks and evaluation metrics for assessing the quality of machine translation systems across different languages.
  7. BLEU (Bilingual Evaluation Understudy): BLEU is a metric used to evaluate the quality of machine-translated text relative to human-translated reference texts. It compares n-gram overlap between the generated translation and the reference translations.
  8. ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a set of metrics used for evaluating automatic summarization and machine translation. It measures the overlap between generated summaries or translations and reference summaries or translations.

These benchmarks and standards play a crucial role in assessing the performance and progress of large language models, helping researchers and developers understand their strengths, weaknesses, and areas for improvement.

Yann Lecun & Lex Fridman: Limits of LLMs

New topic for us; time only to cover the basics.  We have followed language, generally, however — every month — because best practice discovery and promulgation in conceiving, designing, building, occupying and maintaining the architectural character of education settlements depends upon a common vocabulary.  The struggle to agree upon vocabulary presents an outsized challenge to the work we do.

Large language models hold significant potential for the building construction industry by streamlining various processes. They can analyze vast amounts of data to aid in architectural design, structural analysis, and project management. These models can generate detailed plans, suggest optimized construction techniques, and assist in cost estimation. Moreover, they facilitate better communication among stakeholders by providing natural language interfaces for discussing complex concepts. By harnessing the power of large language models, the construction industry can enhance efficiency, reduce errors, and ultimately deliver better-designed and more cost-effective buildings.

Join us today at the usual hour.  Use the login credentials at the upper right of our home page.

Related:

print(“Python”)

Standards January: Language

Standard for Large Language Model Agent Interface

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content