Author Archives: [email protected]

Loading
loading...

Entertainment Occupancies

2024 GROUP A PROPOSED CHANGES TO THE I-CODES | Complete Monograph 2658 Pages

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

“View from the Ancient Theater in Taormina to Mount Etna” c. 1880 Carl Wuttke

Safety and sustainability for any facility begins with an understanding of who shall occupy it.  University settings, with mixed-use phenomenon arising spontaneously and temporarily, present challenges and no less so in  square-footage identified as performing arts facilities.  Education communities present the largest installed base of mixed use and performing arts facilities.  A distinction is made between supervised occupants that are in secondary schools (generally under age 18) and unsupervised occupants that are in university facilities (generally above age 18).

First principles regarding occupancy classifications for performing arts facilities appear in Section 303 of the International Building Code Assembly Group A-1.  The public edition of the 2021 IBC is linked below:

2024 IBC Chapter 3: Occupancy Classification and Use


Each of the International Code Council code development groups A, B and C; fetch back to these classifications.   You can sample the safety concepts in play with an examination of the document linked below:

2019 GROUP B PROPOSED CHANGES TO THE GROUP B I-CODES

2019 GROUP B PUBLIC COMMENT AGENDA

Each of the foregoing documents are lengthy so we recommend using search terms such as “school”, “college”, ‘”university”, “auditorium”, “theater”, “children”, “student” to hasten your cut through it.

We find continuation of lowering of the lighting power densities as noteworthy.  Technical committees assembled and managed by the International Code Council, the American Society of Heating & Refrigeration Engineers and the Illumination Engineering Society are leaders in developing consensus products that drive the LED illumination transformation.

 

The revision schedule for the next tranche of ICC titles that are built upon the foundation of the IBC is linked below:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage experts in education communities — facility managers, research and teaching staff, architectural and engineering students — to participate directly in the ICC Code Development process at the link below:

https://www.iccsafe.org/cdpaccess/

We reserve a place on the agenda of our standing Lively 200 colloquia on this topic.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-166]

Category: Architectural, Healthcare Facilities, Facility Asset Management

Colleagues: Mike Anthony, Jim Harvey, Richard Robben


Life Safety Code

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.  Public comment on the First Draft of the 2027 Revision will be received until June 3, 2025.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

door (n.)

ICC Group A Monograph (April 2024)

Note 80 school-related entrance and egress concepts (Search term: “School”)

2024 Group A Proposed Changes to the I-Codes (October 2024)

Note 40 school-related entrance and egress concepts (Search term: “School”)

Doors have long since been a simple “opening” or “fenestration”.   Doors are “portals”; nodes on the geometry of the Internet of Small Things.  There are 100’s of thousands of these nodes on any single college, university or school district.  First costs run from $1000 per door in a classroom to $100,000 per door in hospitals with maintenance and operation costs commensurate with complexity of the hardware and software needed to maintain integration of the door with building security and energy systems.

We find the bulk of best practice identified in the catalogs of the following accredited standards developers for the United States construction markets:

ASTM International

Conflicting Requirements of Exit Doors

Standard Practice for Installation of Exterior Windows, Doors and Skylights

Standard Consumer Safety Specification for Child Safety Locks and Latches for Use with Cabinet Doors and Drawers

Repair Methods for Common Water Leaks at Operable Windows and Sliding Glass Doors

Builders Hardware Manufacturers Association

International Code Council

International Building Code Chapter 10:

Doors, Gates and Turnstiles

Chapter 24: Glass and Glazing

Accessibility Requirements (Referenced from ICC A117.1)

Energy Efficiency (Referenced from IECC)

IEEE Current Issues and Recent Research

National Fire Protection Association

Steel Door Institute

University of Michigan Design Guideline 4.7: Building Access Control

University of Michigan Electrical Division 28: Electronic Safety and Security

The US federal government and all 50-states adapt safety and sustainability concepts from the foregoing publishers; either partially or whole cloth.

Today at the usual hour we examine the moment in the standard of care for doors in education communities in the United States.   Join the colloquium with the login credentials at the upper right of our home page.

Standards Michigan Office Ann Arbor Michigan | 2723 South State Street Suite 150

Case Study: Center Grove Community School Corporation Security

Standards Indiana § Greenwood

“Center Grove Schools enters the 2022/2023 school year with a new high-tech safety partner — Centegix CrisisAlert — purchased in part with school safety grant money that pairs with their Emergency Operations Center that opened in January 2022.  The CrisisAlert program  puts security at the fingertips of all teachers and staff.

Both systems address what the district learned it had to work on from a school safety assessment back in 2018 – live monitoring and faster response times in an emergency.   Seven-hundred cameras will scan every school in real-time from the district’s Emergency Operations Center. — More”

Center Grove school security at the push of a button

Security 100

Center Grove Community School Corporation

“A Sunny Day in Springville (Lawrence County, Indiana)” | n.d. Will Vawter

 

K-12 School Security

Old-Fashioned Beef Stew

Standards Wyoming

 

Ingredients

  • 1/4 cup all-purpose flour
  • 1/4 teaspoon freshly ground pepper
  • 1 pound beef stewing meat trimmed and cut into inch cubes
  • 5 teaspoons vegetable oil
  • 2 Tablespoons red wine vinegar
  • 1 cup red wine
  • 3 1/2 cups beef broth homemade or low-sodium canned
  • 1 bay leaf
  • 1 medium onion peeled and chopped
  • 5 medium carrots peeled and cut into 1/4 inch rounds
  • 2 large baking potatoes peeled and cut into 3/4 inch cubes
  • 2 teaspoons salt

Instructions

  • Wash hands with soap and water for 20 seconds.

  • Combine the flour and pepper in a bowl, add the beef and toss to coat well. Heat 3 teaspoons of the oil in a large pot. Add the beef a few pieces at a time; do not overcrowd. Cook, turning the pieces until beef is browned on all sides, about 5 minutes per batch; add more oil as needed between batches.

  • Wash the counter and utensils that touched the raw meat. Wash hands with soap and water after handling raw meat.

  • Remove the beef from the pot and add the vinegar and wine. Cook over medium-high heat, scraping the pan with a wooden spoon to loosen any browned bits. Add the beef, beef broth, and bay leaf. Bring to a boil, then reduce to a slow simmer.

  • Cover the pot and cook, skimming broth from time to time, until the beef is tender, about 1 1/2 hours.

  • While the beef is cooking, scrub the onion, carrots, and potatoes with a clean vegetable brush under cold running water. Prepare vegetables as directed in the ingredients.

  • Add the onions and carrots to the pot and simmer, covered, for 10 minutes. Add the potatoes and simmer until vegetables are tender, about 30 minutes more. Add broth or water if the stew is dry. Season with salt and pepper to taste.

  • Serve immediately.

Old-Fashioned Beef Stew

Wyoming

Building Construction in Cold Weather

AI Generated | See our LIVE construction cameras

Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,

1. Cold-Weather Concrete Technology

    • Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
    • Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
    • Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
    • Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.

2. Temporary Heating Solutions

    • Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
    • Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.

3. Advanced Building Materials

    • Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
    • Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.

4. Insulation Techniques

    • Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
    • Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.

5. Ground Thawing Technologies

    • Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
    • Steam Thawing: Direct steam application to melt snow or thaw frozen soil.

6. Lighting Solutions

    • High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.

7. Weather-Resistant Machinery

    • Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.

8. Workforce Adaptations

    • Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
    • Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.

9. Snow and Ice Management

    • Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
    • Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.

The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:

1. Cold Stress and Temperature Exposure

  • General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
  • OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.

2. PPE (Personal Protective Equipment)

  • 29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
  • 29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.

3. Walking and Working Surfaces

  • 29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
  • 29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.

4. Snow and Ice Removal

  • Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.

5. Powered Equipment

  • 29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.

6. Excavations and Frost Heave

  • 29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.

7. Temporary Heating

  • 29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.

8. Illumination

  • 29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.

9. Emergency Preparedness

  • First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.

10. Hazard Communication and Training

  • 29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.

By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.


Related:

Snow Load

Electrical heat tracing: international harmonization-now and in the future

Heat Tracing Installation

Pipe Heating

Snow & Ice Management

Heat Tracing Installation

“Vue de toits (effet de neige)” 1878 Gustave Caillebotte

One of the core documents for heat tracing is entering a new 5-year revision cycle; a consensus standard that is especially relevant this time of year because of the personal danger and property damage that is possible in the winter months.  Education communities depend upon heat tracing for several reasons; just a few of them listed below:

  • Ice damming in roof gutters that can cause failure of roof and gutter structural support
  • Piping systems for sprinkler systems and emergency power generation equipment
  • Sidewalk, ramp and stairway protection

IEEE 515 Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Industrial Applications is one of several consensus documents for trace heating technology.   Its inspiration originates in the petrochemical industry but its principles apply to all education facilities exposed to cold temperature and snow.   From its prospectus:

This standard provides requirements for the testing, design,installation, and maintenance of electrical resistance trace heating in general industries as applied to pipelines, vessels, pre-traced and thermally insulated instrument tubing and piping, and mechanical equipment. The electrical resistance trace heating is in the form of series trace heaters, parallel trace heaters, and surface heating devices. The requirements also include test criteria to determine the suitability of these heating devices utilized in unclassified (ordinary) locations.

Its principles can, and should be applied with respect to other related documents:

National Electrical Code Article 427

NECA 202 Standard for Installing and Maintaining Industrial Heat Tracing Systems

IEC 62395 Electrical resistance trace heating systems for industrial and commercial applications

 ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings

Lowell House / Harvard University

We are happy to explain the use of this document in design guidelines and/or construction specifications during any of our daily colloquia.   We generally find more authoritative voices in collaborations with the IEEE Education & Healthcare Facilities Committee which meets 4 times per month in Europe and in the Americas.  We maintain this title on the standing agenda of our Snow & Ice colloquia.  See our CALENDER for the next online meeting.

Issue: [18-331]

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

Category: Electrical, #SmartCampus


LEARN MORE:

Good Building Practice for Northern Facilities

Electrical Heat Tracing:International Harmonization Now and in the Future, IEEE Industry Standards Magazine, May/June 2002 pages 50-56

 

Snow Load Calculator

Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-22)

 

ASCE Hazard Tool

Quick & Dirty Snow Load Calculator

Call for public proposals for the 2028 edition

Structural Design

 

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content