Author Archives: mike@standardsmichigan.com

Loading
loading...

Watersport

Athletic Competition Timing Standards

Today we update our understanding of best practice catalogs for outdoor and indoor watersport; primarily swimming and rowing.  Use the login credentials at the upper right of our home page.

Natatoriums 300: Advanced Topics

Sapienza – Università di Roma

USA Swimming and the National Collegiate Athletic Association Swimming are two distinct organizations that oversee different aspects of competitive swimming in the United States. USA Swimming governs competitive swimming in the United States across all age groups and skill levels, while NCAA Swimming specifically focuses on collegiate-level swimming and diving competitions within the NCAA framework. Both organizations play crucial roles in the development and promotion of swimming in the United States.

Governing Body:

USA Swimming is the national governing body for the sport of swimming in the United States. It is responsible for overseeing competitive swimming at all levels, from grassroots programs to elite national and international competitions.
NCAA Swimming: NCAA Swimming is part of the National Collegiate Athletic Association (NCAA), which governs intercollegiate sports in the United States. NCAA Swimming specifically deals with collegiate-level swimming competitions among universities and colleges.

Scope:

USA Swimming is responsible for organizing and regulating competitive swimming for all age groups and skill levels, from youth swimmers to Masters swimmers (adults). It oversees swim clubs, hosts competitions, and develops national teams for international events.
NCAA Swimming: NCAA Swimming focuses exclusively on college-level swimming and diving competitions. It sets the rules and guidelines for swimming and diving programs at NCAA member institutions.

Membership:

Individuals, swim clubs, and teams can become members of USA Swimming, allowing them to participate in USA Swimming-sanctioned events, access coaching resources, and benefit from the organization’s development programs.
NCAA Swimming: NCAA Swimming is composed of collegiate athletes who compete for their respective universities and colleges. Athletes are typically student-athletes who represent their schools in NCAA-sanctioned competitions.

Competition Format:

USA Swimming hosts a wide range of competitions, including local, regional, and national meets, as well as Olympic Trials and international events. Swimmers compete as individuals, representing their swim clubs or teams.
NCAA Swimming: NCAA Swimming primarily consists of dual meets, invitational meets, and conference championships at the collegiate level. Swimmers represent their respective universities or colleges, earning points for their teams in dual meets and competing for conference and national titles.

Scholarships:

USA Swimming itself does not offer scholarships. Scholarships for competitive swimmers are typically awarded by colleges and universities based on an athlete’s performance and potential.
NCAA Swimming: NCAA member institutions offer scholarships to talented student-athletes in various sports, including swimming. These scholarships can cover tuition, room, board, and other expenses, making NCAA swimming an avenue for athletes to receive financial support for their education.

 


 

Swimming, Water Polo and Diving Lighting

Steeplechase Water Jump

The steeplechase event requires a combination of speed, endurance, and jumping ability, as athletes must clear the barriers while maintaining their pace and negotiating the water jump. The rules and specifications for the steeplechase event are set by the International Association of Athletics Federations the governing body for the sport of athletics (track and field) worldwide; with minor adaptations by the NCAA for intercollegiate competition.

Emma Coburn | University of Colorado Boulder

The steeplechase is a distance race with barriers and a water pit that athletes must clear during the race.  According to the NCAA Track and Field and Cross Country rulebook, the standards for the steeplechase water jump are as follows:

  1. Length: The water pit must be at least 3.66 meters (12 feet) long.
  2. Width: The water pit must be at least 3.66 meters (12 feet) wide.
  3. Depth: The water pit must have a minimum depth of 0.7 meters (2 feet 4 inches) and a maximum depth of 0.9 meters (2 feet 11 inches).
  4. Slope: The slope of the water pit must not exceed 1:5, meaning that for every 5 meters in length, the water pit can rise by no more than 1 meter in height.
  5. Barrier: The water pit must be preceded by a solid barrier that is 91.4 cm (3 feet) high. Athletes are required to clear this barrier before landing in the water pit.

These standards may be subject to change and may vary depending on the specific NCAA division (Division I, Division II, or Division III) and other factors such as venue requirements. Therefore, it’s always best to refer to the official NCAA rules and regulations for the most up-to-date and accurate information on the steeplechase water jump standards in NCAA competitions.

ASTM F 2157-09 (2018) Standard Specification for Synthetic Surfaced Running Tracks
This specification establishes the minimum performance requirements and classification when tested in accordance with the procedures outlined within this specification. All documents referencing this specification must include classification required.

ASTM F 2569-11 Standard Test Method for Evaluating the Force Reduction Properties of Surfaces for Athletic Use
This test method covers the quantitative measurement and normalization of impact forces generated through a mechanical impact test on an athletic surface. The impact forces simulated in this test method are intended to represent those produced by lower extremities of an athlete during landing events on sport or athletic surfaces.

ASTM F 2949-12 Standard Specification for Pole Vault Box Collars
This specification covers minimum requirements of size, physical characteristics of materials, standard testing procedures, labeling and identification of pole vault box collars.

ASTM F 1162/F1162M-18 Standard Specification for Pole Vault Landing Systems
This specification covers minimum requirements of size, physical characteristics of materials, standard testing procedures, labeling and identification of pole vault landing systems.

ASTM F 2270-12 (2018) Standard Guide for Construction and Maintenance of Warning Track Areas on Sports Fields
This guide covers techniques that are appropriate for the construction and maintenance of warning track areas on sports fields. This guide provides guidance for the selection of materials, such as soil and sand for use in constructing or reconditioning warning track areas and for selection of management practices that will maintain a safe and functioning warning track.

ASTM F 2650-17e1 Standard Terminology Relating to Impact Testing of Sports Surfaces and Equipment
This terminology covers terms related to impact test methods and impact attenuation specifications of sports equipment and surfaces.

Sports Equipment & Surfaces

Fountains

“Temple, Fountain and Cave in Sezincote Park” | Thomas Daniell (1819) | Yale Center for British Art

From time to time we break from our interest in lowering the cost of our “cities-within-cities” to enjoy the work of our colleagues responsible for seasonal ambience and public art.  We have a dedicated post that celebrates the accomplishments of our gardeners and horticultural staff.   Today we dedicate a post to campus fountains–a focal point for gathering and a place for personal reflection for which there is no price.

Alas, we find a quickening of standards developing organizations growing their footprint in the spaces around buildings now.  They used to confine the scopes of their standardization enterprises to the building envelope.  That day will soon be behind us as an energized cadre of water rights social justice workers, public safety, sustainability and energy conservation professionals descend upon campus fountains with prescriptive requirements for evaporation rates, bromine concentrations, training, certification and inspections.  In other words regulators and conformity functionaries will outnumber benefactors and fountain designers 1 million to 1.

We will deal with all that when the day comes.  For the moment, let’s just enjoy them.

We are happy to walk you through the relevant structural, water safety, plumbing and electrical issues any day at 11 AM EST during our daily standing online teleconferences.   Click on any image for author attribution, photo credit or other information.

Purdue University

The Great Court at Trinity College, Cambridge

Regent University

University of Washington

Hauptgebäude der Ludwig-Maximilians-Universität München, Bayern, Deutschland

College of the Desert / Palm Desert, California

California Institute of Technology

Berry College

Utah Valley University

Universitat d’Alacant / Sant Vicent del Raspeig, Spain

Collin County Community College / Plano, Texas

University of Toledo

University of Michigan College of Engineering

Harvard University

Florida State University

University of North Texas

 

Pool, Fountain, Agriculture & Water Infrastructure Electrical Safety

2025 National Electrical Code Workspace

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

Education communities have significant assets tied up in swimming pools, immersion pools, fountains, hydro-therapy installations (in hospitals and athletic training facilities) and flood control facilities (in congested, non-permeable parts of urban campuses) we have been keeping an eye on leading practice discovery for these installations in the 2020 National Electrical Code.

With electrical safety — i.e. shock protection — as the focus of this post*, the relevant parts of the 2020 NEC reside in Articles 680 and 682 are described below:

Article 680 applies to the construction and installation of electrical wiring for, and equipment in or adjacent all swimming, wading, therapeutic and decorative pools, fountains, hot tubs, spas and hydromassage bathtubs, whether permanently installed or storable, and to metallic auxiliary equipment, such as pumps, filters, and similar equipment.  The term body of water used throughout Part I applies to all bodies of water covered in this scope unless otherwise amended.

Article 682 applies to the installation of electrical wiring for, and the equipment in and adjacent to, natural or artificially made bodies of water not covered by other articles in the NEC, such as, but not limited to aeration ponds, fish farm ponds, storm retention basins, treatment ponds and irrigation (channel facilities.   Water depths may vary seasonally or be controlled.

When the 2020 NEC is released there will be hundreds (more like thousands) of experts who make their living on each NEC revision fanning out across the globe able and ready to interpret, advise and train.  We are not primarily a code training enterprise but we do get down into the weeds of electrical safety technical discussion where leading practice discovery discussion is recorded:

2020 NEC Article 680-682 Public Input | Pages 240 – 501

2020 NEC Articles 680-682 First Draft Report | Page 59 – 152

2020 NEC Articles 680-682 Public Comment Report

2020 NEC Articles 680-682 Second Draft Final Ballot

Transcripts superseded.  We refer to the 2026 Workspace linked at the top of this page.

We find interest in corrosion control, water bottle fill stations, water heating technologies, LED illumination as well as the usual editorial, correlation and concepts movement between articles.  From these transcripts it should also be plain that grounding and bonding practice, GFCI protection, luminaire location and wiring, corrosion management continue to be of primary interest in electrical safety assurance.   Related safety concepts appear in NFPA 70B and NFPA 70E.   Anything having to do with water; or the areas around water, are regions of elevated risk.

We are happy to discuss electrical safety standards any day at 11 AM Eastern time and host a monthly breakout teleconference dedicated to Electrical Power Safety in education facilities.  See our CALENDAR for the next online meeting.  We also collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets online four times monthly in European and American time zones.

Issue: [16-102]

Category: Electrical, Risk Management, Water,

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

*We leave the technical specifics of footcandle distribution to another, future post.


LEARN MORE:

2017 NEC changes for electrical safety in swimming pools

2020 NEC Changes (All Articles)

 

 

 

Elevators & Lifts

The first elevator in the United States was installed at Harvard University in 1874. It was not a passenger elevator as we typically think of today, but rather a freight elevator used to move heavy items within a building. The installation of this elevator marked an important development in building technology and transportation within multi-story structures. It was based on the design of Elisha Otis, who is famous for inventing the safety elevator with a safety brake system that prevents the elevator from falling if the hoisting cable fails. Otis’ innovation played a pivotal role in making elevators safe and practical for everyday use, leading to their widespread adoption in buildings around the world.

Elevator design by the German engineer Konrad Kyeser (1405)

Education communities are stewards of 100’s of lifts, elevators and moving walks.  At the University of Michigan, there are the better part of 1000 of them; with 19 of them in Michigan Stadium alone.   The cost of building them — on the order of $50,000 to $150,000 per floor depending upon architectural styling — and the highly trained staff needed to operate, maintain and program interoperability software is another cost that requires attention.   All building design and construction disciplines — architectural, mechanical and electrical have a hand in making this technology safe and sustainabile.

We start with international and nationally developed best practice literature and work our way to state level adaptations.  Labor for this technology is heavily regulated.

Its a rarefied and crazy domain for the user-interest.  Expertise is passionate about safety and idiosyncratic but needs to be given the life safety hazard.  Today we review o pull together public consultation notices on relevant codes, standards and regulations today  11 AM/EDT.

Московский государственный университет имени

Elevators 500

More

NFPA 70 Article 620 Elevators, etc.

Elevator U

International Building Code Chapter 30: Elevators and Conveying Systems

Inside Higher Ed: Tragedy in an Elevator

Jimlielevators

 

The History of Elevators

https://upload.wikimedia.org/wikipedia/commons/8/8c/Colin_Campbell_Cooper%2C_Hudson_River_Waterfront%2C_N.Y.C.jpg

The first recorded public use of an elevator was in 1743, in a private residence in France. It was created by a French scientist and inventor named Louis-François Dauprat. However, this early elevator was not used for public transportation or in a commercial building.

The first practical passenger elevator was invented by Elisha Graves Otis, an American industrialist and inventor, in 1852.  The Otis elevator used a safety device known as a “safety brake” or “safety hoist,” which prevented the elevator from falling in case the hoisting cable broke at a five-story building in New York City in 1857, known as Haughwout Building.

This invention revolutionized vertical transportation, allowing for the construction of taller buildings and changing the way people live and work in urban areas.

Elevators & Lifts

“Elevator Man”

The earliest installation of a passenger elevator in a university building in the United States was at the Massachusetts Institute of Technology.  In 1861, Otis Brothers & Co., the company founded by Elisha Graves Otis, installed the first passenger elevator on a university campus in the Rogers Building at MIT. The Rogers Building was a three-story structure that housed laboratories, classrooms, and offices for faculty and students. The installation of the passenger elevator provided vertical transportation within the building, making it more convenient for people to move between floors.

This early installation marked an important milestone in the history of vertical transportation on college and university campuses, and it paved the way for the adoption of elevators in other educational institutions as they expanded in size and height over time.

 

Rogers Building

The earliest installation of a passenger elevator in a university building in the United States was at the Massachusetts Institute of Technology in Cambridge.  In 1861, Otis Brothers & Co., the company founded by Elisha Graves Otis, installed the first passenger elevator in this three-story structure that housed laboratories, classrooms, and offices for faculty and students.

This early installation of a passenger elevator marked an important milestone in the history of vertical transportation on college and university campuses, and it paved the way for the adoption of elevators in other educational institutions as they expanded in size and height over time.

Department of Facilities

The History of Elevators

Standards Massachusetts

Elevator Safety Code

Elevator,  escalator  and moving walk systems are among the most complicated systems in any urban environment, no less so than on the  #WiseCampus in which many large research universities have 100 to 1000 elevators to safely and economically operate, service and continuously commission.  These systems are regulated heavily at state and local levels of government and have oversight from volunteers that are passionate about their work.

These “movement systems” are absorbed into the Internet of Things transformation.  Lately we have tried to keep pace with the expansion of requirements to include software integration professionals to coordinate the interoperability of elevators, lifts and escalators with building automation systems for fire safety, indoor air quality and disaster management.  Much of work requires understanding of the local adaptations of national building codes.

Some university elevator O&M units use a combination of in-house, manufacturer and standing order contractors to accomplish their safety and sustainability objectives.

In the United States the American Society of Mechanical Engineers is the dominant standards developer of elevator and escalator system best practice titles;  its breakdown of technical committees listed in the link below:

A17 ELEVATORS AND ESCALATORS

C&S Connect: ASME Proposals Available for Public Review

Public consultation on revisions to the Elevator Safety Code closes July 23rd. 

Safety Code for Existing Elevators and Escalators

Guide for Inspection of Elevators, Escalators, and Moving Walks

Guide for Elevator Seismic Design

As always, we encourage facility managers, elevator shop personnel to participate directly in the ASME Codes & Standards development process.   For example, it would be relatively easy for our colleagues in the Phoenix, Arizona region to attend one or more of the technical committee meetings; ideally with operating data and a solid proposal for improving the A17 suite.

University of Wisconsin Stadium Elevator

 

All ASME standards are on the agenda of our Mechanical, Pathway and Elevator & Lift colloquia.  See our CALENDAR for the next online teleconferences; open to everyone.  Use the login credentials at the upper right of our home page.

 

Issue: [11-50]

Category: Electrical, Elevators, #WiseCampus

Colleagues: Mike Anthony, Jim Harvey, Richard Robben, Larry Spielvogel

 


More:

Bibliography: Elevators, Lifts and Moving Walks

ISO/TC 178 Lifts, escalators and moving walks

Human Factors Using Elevators in Emergency Evacuation

Archive / Elevator Safety Code

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content