Bourbon Research

Loading
loading...

Bourbon Research

March 6, 2024
mike@standardsmichigan.com
, , , , ,
No Comments


What Is A Standard Drink?


Greg Gutfeld and guests discuss how President Biden’s alcohol czar is warning that new guidance could be only two beers a week

Robert De Niro | Cambridge Union

March 6, 2024
mike@standardsmichigan.com
,
No Comments

The Cambridge Union is the oldest debating society in the world, as well as the largest student society in Cambridge. It remains one of the highest-ranking competitive debating chambers worldwide, and hosts a range of speakers and topical debates each term.

Since 1815 the Union has been committed to the principles of free speech and of fair, open, and honest debate. Founded at a time when the university authorities attempted to restrict these freedoms, the Union remains the centre of controversial and serious debate within the University of Cambridge.

The Union has been discussing, debating, and shaping the issues that matter for the last two hundred years. Understanding how concepts work, challenging ideas, and having a frank discussion is the bedrock upon which our society is founded. It is the responsibility of the Union to ensure that these ideals are protected and nurtured for years to come.

Academic and Financial Planning and Analysis

KJHK 90.7 FM

March 6, 2024
mike@standardsmichigan.com
, ,
No Comments

Click image to start livestream

Water 300

March 6, 2024
jia
No Comments

“At the Water Trough” 1876 J. Alden Weir

 

“A flood is nature’s way of telling you

that you live in the wrong place.”

— Some guy

 

Water standards make up a large catalog and it will take most of 2023 to untangle the titles, the topics, proposals, rebuttals and resolutions.  When you read our claim that since 1993 we have created a new academic discipline we would present the best practice literature of the world’s most abundance as an example.

The Water 100 session takes an aerial view of relevant standards developers, their catalogs and revision schedules.

The Water 200 session we examine the literature for best practice inside buildings; premise water supply for food preparation, sanitation and energy systems.

The Water 300 session we examine water management standards in selected nations with specific interest in educational settlements with proximity to oceans.

March 28, 2024

The Water 400 session will run through best practice catalogs of water management outside buildings, including interaction with regional water management systems.

The Water 500 session is a study of case histories, disasters, legal action related to non-conformance.  Innovation.


Water safety and sustainability standards have been on the Standards Michigan agenda since the early 2000’s.  Some of the concepts we have tracked over the years; and contributed data, comments and proposals to technical committees, are listed below:

  1. Legionella mitigation
  2. Swimming pool water quality
  3. Fire protection sprinkler water availability and safety
    – NFPA 70 Article 695 Fire Pumps
  4. Backflow prevention/Cross-connect systems
  5. Security of district energy power plant and hospital water supply
  6. Electrical shock protection in pools, fountains, spas and waterfront recreational docking facilities
  7. Rainwater catchment
  8. Water in extreme weather events
  9. Flood abatement systems
  10. Building plumbing codes (ICC and IAPMO)
  11. Water Re-use
  12. Water heaters
  13. District energy water treatment
  14. Food service steam tables
  15. Greywater
  16.  Residence hall potable water systems
  17. Water use in emergency shower and eyewash installations
  18. Decorative fountains.
  19. Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

40 CFR § 141.92 – Monitoring for lead in schools and child care facilities

Since 2016 we have tracked other water-related issues:

  1. Safe water in playgrounds
  2. National Seagrant College programs
  3. Guide to Infection Control in the Healthcare Setting
  4. Electrical safety around water (cooling towers, swimming pools, spas)
  5. ASTM Water Testing Standards
  6. ASTM Standard for Water Distribution
  7. Electricity and Water Conservation on College and University Campuses in Response to National Competitions among Dormitories: Quantifying Relationships between Behavior, Conservation Strategies and Psychological Metrics

Relevant federal legislation:

  1. Clean Water Act
  2. Drinking Water Requirements for States and Public Water Systems
  3. Resource Conservation and Recovery Act
  4. Safe Drinking Water Act

Relevant Research:

Real Time Monitoring System of Drinking Water Quality Using Internet of Things

UNICON: An Open Dataset of Electricity, Gas and Water Consumption in a Large Multi-Campus University Setting

IoT based Domestic Water Recharge System

 

Send bella@standardsmichigan.com an email to request a more detailed advance agenda.   To join the conversation use the login credentials at the upper right of our home page.

More

IAPMO Publishes U.S., Canadian Standard for Detection, Monitoring, Control of Plumbing Systems

Standing Agenda / Water

Natatoriums 300: Advanced Topics

More

Solitude Lake Management for Universities and Colleges

There are several universities in the United States with campuses that have property frontage on an ocean:

  1. University of California, Santa Barbara (UCSB) – UCSB is located along the Pacific Ocean in Southern California.
  2. University of California, San Diego (UCSD) – UCSD is situated near the coast of the Pacific Ocean in La Jolla, California.
  3. University of Hawaii at Manoa – The main campus of the University of Hawaii is located on the island of Oahu and has oceanfront property.
  4. University of Miami – Located in Coral Gables, Florida, the University of Miami is situated on the Atlantic Ocean coast.
  5. University of Rhode Island – URI is located in Kingston, Rhode Island, and has oceanfront property along Narragansett Bay and the Atlantic Ocean.
  6. Florida Atlantic University – FAU has several campuses along the southeastern coast of Florida, with some campuses near the Atlantic Ocean.
  7. University of California, Santa Cruz (UCSC) – UCSC is located along the California coast, offering stunning views of the Pacific Ocean.
  8. Pepperdine University – Pepperdine’s main campus is located in Malibu, California, right along the Pacific Ocean.
  9. University of California, Irvine (UCI) – UCI is located in Orange County, California, and is close to the Pacific Ocean.
  10. University of Southern California (USC) – USC is located in Los Angeles, California, and is not far from the Pacific Ocean.

 

When anxious, uneasy and bad thoughts come, I go to the sea, and the sea drowns them out with its great wide sounds, cleanses me with its noise, and imposes a rhythm upon everthing in me that is bewildered and confused. - Rainer Maria Rilke

Water and Electricity

March 6, 2024
mike@standardsmichigan.com
, ,
No Comments

Supporting swimming pools with electricity involves various essential functions such as filtration, heating, lighting, and sanitation. Ensuring safety and energy efficiency is crucial, and pool owners can take steps to minimize electricity costs and environmental impact. Key points:

Filtration and Circulation: Swimming pools rely on electric pumps to circulate water through filters, removing debris and maintaining water quality.

Heating: Electric heaters or heat pumps are used to regulate water temperature for comfort, especially in colder seasons.

Lighting: Underwater and pool area lighting enhance safety and aesthetics, typically powered by electricity.

Chlorination and Sanitation: Electric chlorinators or ozone generators help maintain water cleanliness and hygiene.

Automation: Electric control systems enable pool owners to manage filtration, heating, and lighting remotely for convenience and energy efficiency.

Energy Efficiency: Pool owners can invest in energy-efficient equipment, like variable-speed pumps and LED lighting, to reduce electricity consumption and operating costs.

Operations and Maintenance: Regular electrical maintenance ensures safe and reliable pool operation, preventing electrical faults and hazards.  The electricity cost for pool operation can be significant, so pool owners should consider energy-efficient practices and equipment to reduce expenses.

Education communities present one of the largest installed bases of artificially created bodies of water; the most abundance resource on earth.  These bodies vary in size, purpose, and design but are all created by human intervention to serve specific needs, whether practical, recreational, or aesthetic.  Safe and sustainable management of them in the Unite States are informed by best practice found in Article 680 of the National Electrical Code with scope statement below:

Construction and installation of electrical wiring for, and equipment in or adjacent to, all swimming, wading, therapeutic, and decorative pools; fountains; hot tubs; spas; and hydromassage bathtubs, whether permanently installed or storable, and to metallic auxiliary equipment, such as pumps, filters, and similar equipment.

Consultation on the First Draft of the 2026 revision closes August 24, 2024.

2026 National Electrical Code Workspace

Related:

Pool, Fountain, Agriculture & Water Infrastructure Electrical Safety

https://www.si.com/extra-mustard/2016/08/15/michael-phelps-poses-bottom-university-michigan-pool-2005

Marina & Boatyard Electrical Safety

All Season Outdoor Swim & Dive

March 6, 2024
mike@standardsmichigan.com
,
No Comments

Masters University Facilities

Standards California

H20

March 6, 2024
mike@standardsmichigan.com
,
No Comments

“Lord how this world improves as we grow older”

The Nature of Tomorrow: A History of the Environmental Future 

Michael Rawson

 

In the nineteenth century, machines would become so central to the imagined future that no vision of tomorrow was credible without them. (The catalyst for this transformation was the Industrial Revolution.) The author Jane Webb displayed a keen appreciation for that fact in a popular work of fiction that she published in 1827. Her story, set in twenty-second-century Egypt, described the Nile valley as a place where “steamboats glided down the canals, and furnaces raised their smoky heads amidst groves of palm trees; whilst iron railways intersected orange groves, and plantations of dates and pomegranates might be seen bordering excavations intended for coal pits.” In Webb’s future Egypt, as in so many other visions of tomorrow produced in the first half of the nineteenth century, machines provided the muscle for developing the natural environment at a fantastic pace and on a global scale.

The futuristic fiction of the early nineteenth century overflowed with mechanical inventions. Airships carrying thousands of passengers dominate the skies; steamships, sometimes with additional pull from giant kites, turn the oceans into lakes; trains traveling hundreds of miles an hour defeat time. Machines dry hay faster, bore deeper tunnels, and shield cities from inclement weather. The more machines, the more futuristic the story felt. Jane Webb’s book was so packed with imaginative innovations in science and technology that the famous English landscape architect J.C. Loudon went out of his way to meet the author, assuming it was a man. They were married later that year.

Authors did not include fantastic machines in their tales of tomorrow just for their novelty value. The machines demonstrated human control of the natural world, something writers did not hesitate to point out. “So many new inventions had been struck out,” wrote Webb of her future England, “so many wonderful discoveries made, and so many ingenious contrivances put into execution, that poor Nature seemed to be degraded from her throne, and usurping man to have stepped up to supply her place.” The fiction of the future was in general agreement that machines would transform dreams of growth and progress into reality.

Most of those contemplating the future saw particular potential in steam, which was the most transformative technology of the day. Steam’s power to remold the material world and fuel expansion appeared to be boundless. When the great French scientist François Arago delivered an address to commemorate James Watt, who made important refinements to the steam engine, he foresaw a future liberated from the bonds of nature through steam. With such power at its command, he claimed, humankind could bring more land under cultivation, grow more food, increase its population, expand its cities, and cover the earth with elegant mansions, even those parts previously considered uninhabitable. Future generations, Arago assured his listeners, would remember this time as the Age of Watt.

Possible applications for steam multiplied so quickly that, as early as the 1820s, parodies of future steam technologies began to appear. One future world sped up the delivery of mail by using steam-powered cannons to shoot it from town to town. Another featured a “steam concert” in which the performers were steam-powered machines that achieved greater technical accuracy than their human counterparts, and without being subject to “colds, loss of voice, and bronchitis.” Still another contained a ballroom that enabled guests to dance a quadrille without the trouble of having to move their feet: they simply stood on circles set into the floor (blue for the gentlemen, pink for the ladies) while the steam-powered circles moved them around in the necessary pattern.

British illustrators joined in, projecting the cutting-edge technologies of the day into comical futures. Henry Alken’s images show the roads and parks of London crowded with a dizzying variety of fast-moving steam-powered vehicles that fill the air with smoke and occasionally run out of control or explode. Charles Jameson Grant’s image of the year 2000 depicts a long chain of movable houses traveling by rail and people making shorter trips using mechanical wings fastened to their backs. William Heath’s series of images shows a vacuum tube that provides a direct trip to India, a steam-powered horse long enough to accommodate five riders, and machines doing a variety of household chores. Most illustrators of future worlds filled the skies with every kind of aerial device imaginable, usually kept aloft by balloons, kites, steam, or some combination of the three.

The March of Intellect, by William Heath, c. 1828.

The March of Intellect, by William Heath, c. 1828. © Trustees of the British Museum

Faith in the speed of technological change ran so high that the reading public could be easily fooled into believing advances had taken place that, in fact, had not. In April 1844 the New York Sun ran a front-page article claiming that a manned balloon had just made the first crossing of the Atlantic Ocean, and in a mere seventy-five hours. The article, a hoax written anonymously by Edgar Allan Poe, used convincing details from actual balloon voyages to describe a trip that would not actually take place until 1978. Steeped in the idea of progress and eager for stories of human advancement, much of the reading public—especially the more intelligent, thought Poe—accepted the account without question. So many people wanted copies of the paper, Poe later wrote, that “the whole square surrounding the Sun building was literally besieged.”

The fascination with new discoveries arose partly from the growing appreciation that applied or “useful” knowledge could enhance national power. As early as 1774 Great Britain began enacting laws preventing the export of cotton machinery, the golden goose of the British economy, and forbidding the emigration of artisans who knew how it worked. Later it became clear that the traditional sources of national power were undergoing a broader shift. “Henceforth,” wrote an American futurist in 1833, “it is no more the strength of the human arm, or the number of men, nor personal courage and bravery, nor the talents of military commanders, nor the advantages of geographical situations, that give power to a nation; but it is intelligence (knowledge of useful things).” The French utopian Claude-Henri de Saint-Simon would have agreed, as he looked forward to a day when the citizens of the world invested authority in a technocratic elite.

The true promise of industrialization and mechanization, however, was material abundance. There was widespread hope that the application of mechanized production to earth’s natural resources would produce so much material wealth that most of humanity’s problems would simply vanish. Why steal from others when goods were so cheap that they might as well be free? Why make war with another country when yours was awash in plenty? Why envy your neighbor when everyone could live the life of the rich? Why deal sharply to achieve wealth when it was readily at hand for everyone? In such a world, money and private property might become entirely unnecessary, and most conflicts would end before they began.

Promises of abundance appealed to both capitalists and utopian socialists, an early wave of socialist thinkers. The utopian socialists saw capitalism as a failure but were sold on the productive benefits of industrialization. In Britain, Robert Owen advocated the creation of model industrial communities in the countryside and believed that, if properly organized, industry could produce more wealth “than the population of the earth can require or advantageously use.” In France, Étienne Cabet began a popular movement based on the fictional utopia he portrayed in Travels in Icaria, assuring his readers that “the current and limitless productive power by means of steam and machines can assure equality of abundance.” Industrialization, if guided by a socialist society, could set humankind free.

Their socialist successors, Karl Marx and Friedrich Engels, also looked forward to a world of unprecedented material abundance driven by scientific and technological advances. But their prophecy of a communist future, which would become one of the most influential visions of tomorrow ever articulated, showed more awareness of the harmful environmental consequences of growth. They worried about soil exhaustion, forest depletion, water contamination, and air pollution; recognized the connection between exploiting workers and exploiting nature in the rush for development; and explicitly stated that humankind has a responsibility to hand the next generation an improved environment rather than a squandered one.

The Lost Balloon, by William Holbrook Beard, 1882.

“The Lost Balloon” 1882 William Holbrook Beard | Smithsonian American Art Museum

Many of the utopian socialist futures also carried an implicit critique of consumption, the flipside of industrial production. Despite their wholehearted embrace of the factory, Cabet and Owen foresaw simple material lives, though not nearly as spartan as in the earlier scientific utopias. The French utopian socialist Charles Fourier, who was far less enamored of industrial expansion, attacked the growing consumer culture more directly. He rejected the dominant economic idea that “if every individual could be made to use four times as much clothing as he does, society would quadruple the wealth it derives from manufacturing work.” Instead Fourier hoped to keep consumption low by, first, shifting from individual household consumption to more efficient communal consumption (a move that he believed would also reduce waste) and, second, producing manufactured goods of such a high quality that they would rarely need to be replaced. Although industrialization would help to ensure that everyone had enough, consumption was rarely an end in itself in the socialist utopias.

The same was not true in capitalist circles, where increased consumption came to have a far more positive connotation. By mid-century, economists had built their understanding of resource use on the assumption that human wants are unlimited. That idea, combined with the expectation of boundless plenty through continued growth, suggested that increasing personal consumption was a positive good that would promote progress. “The number of artificial wants amongst a people,” wrote the London author and barrister Michael Angelo Garvey, “and the estimate they form of what constitutes comfort, are the infallible measure of their advance from barbarism.” As a result, any attempt to suppress material wants was “a monstrous error” that would “extinguish science, destroy all the arts by starvation, put an end to commerce, and erase every vestige of civilization from the face of the earth.” Growth-driven consumption became associated with civilization and self-denial with savagery, helping to drive the West away from the classic utopia of sufficiency and toward a new utopian vision of abundance.

Michael Rawson is a professor of history at Brooklyn College and the Graduate Center, City University of New York. He is the author of The Nature of Tomorrow: A History of the Environmental Future and Eden on the Charles: The Making of Boston, which was the recipient of numerous awards and a finalist for the Pulitzer Prize.

CLICK HERE to order complete book

 

 

University Ave Pizza

March 5, 2024
mike@standardsmichigan.com
, , ,
No Comments

North Dakota

While there isn’t a universally standardized pizza that everyone agrees upon, certain types of pizza have become iconic and widely recognized. Some of these include:

Margherita Pizza: This classic pizza features tomato sauce, fresh mozzarella cheese, fresh basil, and a drizzle of olive oil. It’s named after Queen Margherita of Italy.

Pepperoni Pizza: Topped with tomato sauce, mozzarella cheese, and slices of pepperoni (a cured pork and beef sausage).

Margarita Pizza: Similar to the Margherita, but without the basil. It typically has tomato sauce, fresh mozzarella, and sometimes a drizzle of olive oil.

Neapolitan Pizza: This style originated in Naples, Italy. It has a thin, soft, and chewy crust with simple and fresh ingredients like San Marzano tomatoes, mozzarella, fresh basil, and olive oil.

New York Style Pizza: Characterized by its large, foldable slices with a thin and flexible crust. It’s often topped with tomato sauce and mozzarella cheese.

Chicago Deep-Dish Pizza: Known for its thick crust, this pizza has layers of cheese, toppings, and tomato sauce. It’s baked in a deep pan, resulting in a substantial and hearty pizza.

Sicilian Pizza: Square-shaped and thick-crusted, Sicilian pizza is often topped with tomato sauce, mozzarella, and various toppings.

California Pizza: Often associated with innovative and non-traditional toppings, California-style pizza might include ingredients like barbecue chicken, goat cheese, arugula, and more.

Different regions and cultures have their own interpretations and variations, so what’s considered a “standard” pizza can vary widely depending on personal preferences and local traditions.

Dirty Snowball

March 5, 2024
mike@standardsmichigan.com
,
No Comments

“The morning cup of coffee has an exhilaration about it which the cheering influence
of the afternoon or evening cup of tea cannot be expected to reproduce.”
– Oliver Wendell Holmes Sr. (The Autocrat of the Breakfast Table, 1858)

The non-alcoholic version of the Dirty Snowball:

Ingredients:

  • 1 oz Peppermint syrup 
  • 1 oz Chocolate syrup
  • 4 oz Milk or a milk alternative (such as almond milk or oat milk)
  • Ice cubes

Instructions:

  1. Fill a glass with ice cubes.
  2. Pour the peppermint syrup and chocolate syrup over the ice.
  3. Add the milk or milk alternative to the glass.
  4. Stir.

 

The Decline of Men on Campus

Coffee

Michigan Upper Peninsula

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content