Category Archives: Architectural/Hammurabi

Loading
loading...

Myron Hunt Architect

Myron Hubbard Hunt (February 27, 1868 – May 26, 1952) was an American architect whose numerous projects include many noted landmarks in Southern California; most notably, the Rose Bowl Stadium, where the University of Michigan Football team appears routinely on New Year’s Day.  Hunt was elected a Fellow in the American Institute of Architects in 1908.

Michigan 27 | Alabama 20


How To Build A Football Stadium

Natural Light & Architecture

FYI: Consultation on IES RP-46 Recommended Practice: Supporting the Physiological and Behavioral Effects of Lighting in Interior Daytime Environments closes April 10: 

Designing Lighting for People and Buildings

Advantages of natural light in educational occupancies:

  1. Improved academic performance: Studies have shown that students exposed to natural light perform better academically compared to those in classrooms with artificial lighting.
  2. Energy efficiency: Natural light can help to reduce energy consumption and costs associated with artificial lighting.
  3. Positive impact on health and well-being: Exposure to natural light has been linked to improved mood, reduced stress levels, and better sleep quality.
  4. Reduced absenteeism: Natural light has been shown to reduce absenteeism in schools, which can have a positive impact on student learning outcomes.

Disadvantages of natural light in educational occupancies:

  1. Glare and heat gain: Natural light can create glare and heat gain, which can be uncomfortable and distracting for students and teachers.
  2. Inconsistent lighting levels: Natural light levels can vary throughout the day and seasonally, which can make it difficult to maintain consistent lighting levels in a classroom.
  3. Limited control: Unlike artificial lighting, natural light cannot be easily controlled or adjusted to meet the needs of a specific classroom.
  4. Exposure to harmful UV rays: Prolonged exposure to natural light can also lead to harmful UV exposure, which can increase the risk of skin cancer and other health problems.

Overall, natural light has many advantages in educational occupancies, but it is important to carefully consider the potential disadvantages and to design spaces that optimize the benefits of natural light while minimizing the drawbacks.

Architecture and Aesthetic Education

“The most enduring architectural works  are those

that speak to the timeless principles of beauty and order.”

— Roger Scruton

 


Form v. Function | Function v. Form

“We shape our buildings;
thereafter they shape us.”

— Winston Churchill

“The Architect’s Dream” 1840 Thomas Cole

Occupancy classification is “first principal concept”; the essential factor in architectural design because it helps determine the appropriate use of a building and the associated requirements for fire protection and life safety. Occupancy classification refers to the categorization of buildings or portions of buildings based on their intended use and the activities that will occur within them.  The International Building Code provides a set of standards for occupancy classifications that are used by architects and building officials to ensure that buildings are designed and constructed to meet the necessary safety requirements. These standards help ensure that the building’s design and construction comply with fire and life safety codes and regulations.

A building that is classified as a business occupancy — as many classrooms and offices are in education communities — will have different requirements for fire protection and life safety compared to a building that is classified as a residential occupancy. Business occupancies may require fire suppression systems, while residential occupancies may require smoke alarms and carbon monoxide detectors.  Additionally, occupancy classification affects the number of occupants allowed within a building, the type and size of exits required, the need for fire-resistant construction materials, and the placement and quantity of fire extinguishers and other fire protection equipment.*

International Building Code | Chapter 2 Definitions

International Building Code | Chapter 3 Occupancy Classification and Uses

International Green Construction Code | Chapter 3 Definitions, Abbreviations and Acronyms

University of Toronto

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

NFPA 101 Life Safety Code 

Chapter 3 Definitions

Chapter 6 Classification of Occupancy and Hazard of Contents

Chapters 12 & 13 Assembly Occupancies

Chapters 14 & 15 Educational Occupancies

Chapters 18 & 19 Health Care Occupancies

Chapters 29 & 30 Hotels & Dormitories

Chapter 40 Industrial Occupancies

NFPA 70 National Electrical Code

National Electrical Definitions

ASHRAE International

62.1 Ventilation and Acceptable Indoor Air Quality Occupancy Categories

Institute of Electrical and Electronic Engineers

IEEE Recommended Practice for Electric Power Systems in Commercial Buildings

IEEE Recommended Practice for Electric Systems in Health Care Facilities


* The European Union (EU) does not have an equivalent to the International Code Council (ICC) occupancy classification system. Instead, the EU has its own set of regulations and standards for building safety and design, which vary by country.

The main regulatory framework for building safety in the EU is the Construction Products Regulation (CPR), which sets out requirements for construction products and materials that are placed on the market within the EU. The CPR is supported by national building codes and standards, which are developed and enforced by each member state.

In addition to the CPR, the EU has several directives and regulations related to building safety, such as the Energy Performance of Buildings Directive (EPBD) and the Fire Safety of Buildings Directive (FSBD). These directives and regulations set out requirements for energy efficiency, fire safety, and other aspects of building design and construction.

Overall, while the EU does not have an occupancy classification system equivalent to the ICC, it has its own set of regulations and standards that aim to ensure building safety and design across its member states.

Real Time Door Security System With Three Point Authentication

 

Real Time Door Security System With Three Point Authentication

 

N. S. Vinoth Kumar – Lakshmi Narayanan K – Bharathi V – Naresh R

College of Engineering and Technology, SRM Institute of Science and Technology, Chennai

Vasim Babu M

KKR & KSR Institute of Technology and Sciences, Vinjanampadu, Andhra Pradesh

 

Abstract:  A smart way to solve the common problem of conventional door-locking system is proposed using conventional lock key methodology and it can be cloned and used by anyone. The proposed system is to make a secure door lock security system with two factor authentications. The user has to use Radio Frequency Identification tag. The tag’s data will be saved in a database. When the tag is read by the Radio Frequency Identification reader, the user has to input a pass code. After the pass code is entered, the user will receive a One-time password on his mobile device to unlock the door. The biggest advantage of proposed system is that the introduction of two factor authentication to gain the access to the door, which makes it more secure.

 

Ceramics

How Blockchain Will Change Construction

Autodesk Construction Cloud

Blockchain and distributed ledger technology has the potential to improve building construction in several ways:

• Asset Tokenization: Some projects explore the idea of tokenizing real estate assets, including buildings, which can enable fractional ownership and increase liquidity in the real estate market.

Supply chain management: Blockchain can be used to track building materials throughout the supply chain, from the manufacturer to the construction site. This can increase transparency and traceability, reduce fraud and counterfeiting, and improve quality control.

Payment processing: Blockchain can be used to automate payment processing for construction projects, allowing for faster and more efficient payments that are verified through the blockchain. This can reduce payment disputes and delays and increase the speed of project completion.

Smart contracts: Smart contracts can be used in building construction to automatically execute contractual obligations, such as making payments or releasing building plans when certain conditions are met. This can reduce the need for intermediaries and improve the efficiency of the construction process.

Building maintenance and management: Blockchain can be used to create a decentralized database of building maintenance and management records, such as warranties, repair records, and energy usage. This can make it easier for building owners and managers to track and manage building maintenance, reducing downtime and costs.

Decentralized project management: Blockchain can be used to create a decentralized platform for project management, allowing all stakeholders to have access to the same information and reducing the risk of miscommunication and errors.

Ethereum ERC-20

Emergent vendors in this domain:

ImmVRse is a blockchain-based platform that is being developed to help with the design and construction of educational facilities. The platform uses virtual reality to create 3D models of buildings, which can be used to identify potential design flaws and optimize construction plans. The platform also uses blockchain to track project progress, reduce disputes, and facilitate payments.

Solar DAO is a blockchain-based platform that is being developed to fund renewable energy projects, including solar energy systems for educational facilities. The platform allows investors to fund solar energy projects and receive dividends based on the amount of energy generated. The platform also uses blockchain to track project progress and verify energy generation.

Blockcerts is a blockchain-based platform that is being used for digital credentialing in education. The platform allows educational institutions to issue digital certificates and diplomas that are verified through the blockchain, making them more secure and tamper-proof.

Widespread adoption of these technologies will require collaboration and standardization within the industry.

How Blockchain Will Change Construction

Don Tapscott – Ricardo Viana Vargas

Blockchain technology is among the most disruptive forces of the past decade. Its power to record, enable, and secure huge numbers and varieties of transactions raises an intriguing question: Can the same distributed ledger technology that powers bitcoin also enable better execution of strategic projects in a conservative sector like construction, involving large teams of contractors and subcontractors and an abundance of building codes, safety regulations, and standards?

“Increasingly, we are thinking more carefully about when and where we need to compete and what can we share and collaborate on,” said David Bowcott, global director of growth, innovation, and insight in Aon’s global construction and infrastructure group. Using blockchain to automate the contractual processes and paperwork underpinning these complex projects could save money, free up valuable resources, and speed up project delivery. (Unless otherwise noted, quotes are from interviews we conducted as part of our research.)

Harvard University

 

Bibliography

On-Site Construction Quality Inspection Using Blockchain and Smart Contracts

Construction Blockchain Construction

Blockchain for Construction/Real Estate

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content