Category Archives: Athletics/Sport/رياضة

Loading
loading...

Sport News

Sport Standards

 


 

 

Mixed Gender Sport by Design

Engineering in Sport



 

Winter Sport

Swimming Pool Dimensions and Construction

University of Michigan | Washtenaw County

About Last Night: #Paris2024

A standard Olympic-sized swimming pool is defined by the following dimensions:

  • Length: 50 meters
  • Width: 25 meters
  • Depth: A minimum of 2 meters
  • Lanes: 10 lanes, each 2.5 meters wide

The total area of the pool is therefore 1,250 square meters, and it holds approximately 2,500 cubic meters (or 2.5 million liters) of water.

https://standardsmichigan.com/australia/

The organization that sets the standards for Olympic-sized pools is the Fédération Internationale de Natation (FINA) — now World Aquatics — the governing body for swimming, diving, water polo, synchronized swimming, and open water swimming. FINA establishes the regulations for the dimensions and equipment of competition pools used in international events, including the Olympic Games.

The top ten universities that have produced Olympic champion:

  1. University of Southern California (USC)
  2. Stanford University
  3. University of California, Berkeley (UC Berkeley)
  4. University of Florida
  5. University of Texas at Austin
  6. University of Michigan – Michael Phelps, the most decorated Olympian of all time.
  7. Indiana University
  8. Auburn University
  9. University of Georgia
  10. University of Arizona

News:

Swim Swam: 2024 Pool “Slow” and not setting records

Paris Olympics swimmers noticing pool is ‘slow’ 

Pool, Spa & Recreational Waters

Swimming, Water Polo and Diving Lighting

Uniform Swimming Pool, Spa & Hot Tub Code

Swimming, Water Polo and Diving Lighting

 

“In swimming, there are no referees, no foul lines,

no time-outs, and no substitutions.

It’s just you and the water.” – Unknown

 

 

https://standardsmichigan.com/australia/

There are several specific problems that swimming pool overhead lighting aims to solve:

  1. Visibility: Swimming pool overhead lighting is designed to improve visibility in and around the pool. This is important for safety reasons, as it helps swimmers see where they are going and avoid obstacles or hazards.
  2. Aesthetics: Overhead lighting can enhance the appearance of the swimming pool by creating a visually appealing atmosphere. This is especially important for commercial pools where the aesthetics can be an important factor in attracting customers.
  3. Functionality: Overhead lighting can provide additional functionality by allowing the pool to be used during evening hours or in low light conditions. This can increase the usability of the pool and make it more appealing to users.
  4. Energy efficiency: Modern overhead pool lighting solutions are designed to be energy-efficient, reducing the overall energy consumption and operating costs of the pool.
  5. Longevity: Overhead pool lighting must be designed to withstand exposure to water, chlorine, and other harsh chemicals, as well as exposure to the elements. The lighting system must be durable and reliable to ensure longevity and prevent costly repairs or replacements.

Overall, swimming pool overhead lighting is an important component of a safe, functional, and visually appealing pool. It provides illumination for visibility, enhances aesthetics, and improves functionality, while also being energy-efficient and durable.

After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For almost all athletic facilities,  the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

During water sport season the document linked below provides information to illumination designers and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next colloquium on Sport facility codes and standards  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs


More

Watersport Time Standards

Sport Lighting

Water Safety & Sustainability

AWWA COMMENT PERIOD ON AWWA G480, Water Conservation and Efficiency Program Operation and Management Closes June 23

Harvard University Art Museum | In the Sierras, Lake Tahoe | Albert Bierstadt

The American Water Works Association is one of the first names in accredited standards developers that administer leading practice discovery in backflow prevention consensus documents; usually referenced in local and state building codes; and also in education facility design guidelines and construction specifications.

The original University of Michigan standards enterprise gave highest priority to backflow standards because of their central importance of backflow management to education communities; especially large research universities nested within a municipal water system.  Backflow prevention; an unseen technology that assures a safe drinking water supply by keeping water running in one direction by maintaining pressure differences.  Analogous to the way we want electrical current to run in one direction, failure of backflow prevention technology poses a near-instantaneous health risk for the contamination of potable water supplies with foul water.  In the most obvious case, a toilet flush cistern and its water supply must be isolated from the toilet bowl.  In a less obvious case, but at greater scale, a damaged backflow prevention technology at a university research building can contaminate an host-community potable water supply.

There are other ANSI accredited standards developers in the backflow prevention technology space — the International Code Council, the IAPMO Group and ASSE International — for example.

Backflow Preventer

At the moment no AWWA redlines relevant to our objective are open for consultation.  Several relatively stabilized product standards are marked up but none dealing specifically with interoperability issues.  When they are uploaded you may access them at the link below:

AWWA Standards Public Comment Home Page

Students and Young Professionals

AWWA is the first name in US-based water standards so we maintain the AWWA catalog on our Plumbing & Water colloquia.   See our CALENDAR for the next online meeting; open to everyone.

Issue: [11-57]

Category: Water Safety, Plumbing, Mechanical

Colleagues: Mike Anthony, Richard Robben, Steve Snyder, Larry Spielvogel

 


LEARN MORE

Workspace / AWWA

 

Uniform Swimming Pool, Spa & Hot Tub Code

water

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

2024 Uniform Swimming Pool, Spa and Hot Tub Code

READ-ONLY ACCESS

The IAPMO code development process is one of the best in the land.  Its Read-Only Access — needed for light research — is also the best in the land; unlike other ANSI accredited standards developers (who shall be un-named).   The current edition is dated 2024, with the 2027 revision accepted public input until March 3, 2025 according the schedule linked below:

2027 USPSHTC Code Development Calendar

Related:

What are Plumbing Codes?

Uniform Plumbing Code

Coronavirus in Plumbing Systems

Building Structural Maintenance

φ
Any multi-story building requires inspection and maintenance of structural steel framework. The steel supports the building’s weight and resists environmental forces like wind and seismic activity. Over time, corrosion, fatigue cracks, or connection failures can weaken the structure, risking collapse. Inspections detect these issues early, while maintenance, like repainting or replacing damaged parts, preserves steel integrity. For student housing, occupant safety is critical, and compliance with building codes reduces liability risks. Neglecting these practices can lead to structural failure, endangering residents and causing costly repairs or legal issues. Regular upkeep ensures safe, long-lasting buildings.
During today’s session we examine the relevant standards with proposed revisions open for public comment.  Use the login credentials at the upper right of our home page.
φ
No single universal code or standard guarantees that buildings will never crack or fail structurally, as structural integrity depends on various factors like design, materials, construction quality, environmental conditions, and maintenance. However, several widely adopted codes and standards aim to minimize the risk of structural failure and ensure safety, durability, and serviceability. These provide guidelines for design, construction, and maintenance to prevent issues like cracking or catastrophic failure.
φ

Key Codes and Standards:

International Building Code (IBC): Widely used in the United States and other regions, the IBC sets minimum requirements for structural design, materials, and maintenance to ensure safety and performance.  It references standards like ASCE 7 (Minimum Design Loads and Associated Criteria for Buildings and Other Structures) for load calculations (e.g., wind, seismic, snow).Maintenance provisions require regular inspections and repairs to address issues like cracking or deterioration.

ACI 318 (Building Code Requirements for Structural Concrete): Published by the American Concrete Institute this standard governs the design and construction of concrete structures.Includes requirements to control cracking (e.g., reinforcement detailing, concrete mix design) and ensure durability under environmental exposure.Maintenance guidelines recommend periodic inspections for cracks, spalling, or reinforcement corrosion.

AISC 360 (Specification for Structural Steel Buildings): Published by the American Institute of Steel Construction, this standard covers the design, fabrication, and erection of steel structures.  Addresses fatigue, connection design, and corrosion protection to prevent structural failure. Maintenance involves inspecting for issues like weld imperfections or coating degradation.

ASCE/SEI 41-17 (Seismic Evaluation and Retrofit of Existing Buildings):  Focuses on assessing and maintaining existing structures, particularly for seismic performance.  Guides retrofitting to address vulnerabilities like cracking or inadequate load paths.
Maintenance Standards
  • ACI 562 (Assessment, Repair, and Rehabilitation of Existing Concrete Structures):
    • Provides a framework for evaluating and repairing concrete structures to address cracking, spalling, or other damage.
    • Emphasizes regular inspections and timely repairs to maintain structural integrity.
  • NACE/SP0108 (Corrosion Control of Offshore Structures):
    • Covers maintenance practices to prevent corrosion-related failures in steel structures.
  • ASTM E2270 (Standard Practice for Periodic Inspection of Building Facades):
    • Outlines procedures for inspecting facades to identify cracking, water infiltration, or other issues that could lead to structural problems.

IEEE: Structural Health Monitoring system based on strain gauge enabled wireless sensor nodes

Steel research in the steel city

Researchers Make Wood Stronger than Steel

Concrete Matters

Baseball Lighting

Baseball is a pastoral game and lighting changed the experience of it. Since a baseball is less than 3-inches in diameter and routinely travels 400 feet at 100 miles per hour, illumination design must have outfielders in mind as well as other players and spectators.


 

“Baseball at Night” | Morris Kantor (1934)

 

 

 

“Baseball is ninety percent mental

and the other half is physical.”

– Yogi Berra

 

After athletic facility life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

 

During the spring baseball season the document linked below provides guidance for illumination designers, contractors and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We cover the objectives of the energy conservation advocates in separate posts; notably advocates using the International Code Council and the ASHRAE suite to advance their agenda to press boxes and the entire baseball experience (interior and exterior) site in separate posts.

We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next Sport colloquium  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Energy Conservation, Energy,  Athletics & Recreation

Colleagues: Mike Anthony, Jim Harvey, Jose Meijer, Scott Gibbs, George Reiher


More

Comparison of MH and LED performance for sport lighting application

A novel smart energy management system in sports stadiums

Tracking pitches for broadcast television

Stadium Lights

Outdoor Lighting Design Guide

Sport Lighting

 

 

LaCrosse Playfield

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content