Tag Archives: D3

Loading
loading..

Disaster 500

During today’s session we approach disaster avoidance, management and recovery literature from a different point of view than our customary approach — i.e. what happens when, a) there is failure to conform to the standard, b) there is no applicable standard at all.  This approach necessarily requires venturing into the regulatory and legal domains.  We will confine our approach to the following standards development regimes:

  1. De facto standards: These are standards that are not officially recognized or endorsed by any formal organization or government entity, but have become widely adopted by industry or through market forces. Examples include the QWERTY keyboard layout and the MP3 audio format.
  2. De jure standards: These are standards that are formally recognized and endorsed by a government or standard-setting organization. Examples include the ISO 9000 quality management standard and the IEEE 802.11 wireless networking standard.
  3. Consortium standards: These are standards that are developed and maintained by a group of industry stakeholders or organizations, often with the goal of advancing a particular technology or product. Examples include the USB and Bluetooth standards, which are maintained by the USB Implementers Forum and the Bluetooth Special Interest Group, respectively.
  4. Open standards: These are standards that are freely available and can be used, implemented, and modified by anyone without restriction. Examples include the HTML web markup language and the Linux operating system.
  5. Proprietary standards: These are standards that are owned and controlled by a single organization, and may require payment of licensing fees or other restrictions for use or implementation. Examples include the Microsoft Office document format and the Adobe PDF document format.
  6. ANSI accredited standards developers with disaster management catalogs

We may have time to review State of Emergency laws on the books of most government agencies; with special attention to power blackout disasters.

Use the login credentials at the upper right of our home page.

Case Briefings


Managing Disaster with Blockchain, Cloud & IOT

Readings / Emergency Telecommunication Plans

Homeland Power Security

Building Environment Design

Google Data Center

 

“Détruire est facile ; construire est difficile.”

— Victor Hugo

 

The highest level of standardization for the building interiors on the emergent #SmartCampus originates in ISO TC 205 — Building Environment Design.  This committee is charged with standards setting in the design of new buildings and retrofit of existing buildings for acceptable indoor environment and practicable energy conservation and efficiency. Building environment design addresses the technical building systems and related architectural aspects, and includes the related design processes, design methods, design outcomes, and design-phase building commissioning. Indoor environment includes air quality, and thermal, acoustic, and visual factors.  The business plan is linked below:

STRATEGIC BUSINESS PLAN ISO/TC 205

Some of the key ideas in the scope of this project are listed below:

– the design of energy-efficient buildings
– building control systems design
– indoor air quality
– indoor thermal environment
– indoor acoustical environment
– indoor visual environment
– radiant heating and cooling systems
– heating and cooling systems
– building commissioning planning
– moisture in buildings

We see many of the foregoing ideas in the catalog of ASHRAE International — ANSI’s US Technical Advisory Group Administrator in this project, as well as a number of others (CLICK HERE).   There are 31 Participating member and 28 Observing member nations.

Generally speaking, ISO consensus products are performance standards and contrast sharply with prescriptive standards in the energy-related domains in the United States.  Prescriptive standards are easy to enforce but difficult to write.  Performance standards are easy to write but difficult to enforce.

Facility managers that oversee building automation units in education communities in the United States are encouraged to participate in the development of ISO 205 by communicating directly with Brian Cox at ASHRAE (bcox@ashrae.org).  We keep all ISO standards on the standing agenda of our periodic Global and AEdificare standards colloquia.  We also maintain this committee’s catalog on the standing agenda of our Mechanical colloquium.  See our CALENDAR for the next online meetings; open to everyone.

Issue: [10-30]

Category: International, Mechanical, Energy, Facility Asset Management

Colleagues: Mike Anthony, Richard Robben, Larry Spielvogel


More

Bygningsinformasjonsmodellering

 

Cambridge Center for Smart Infrastructure & Construction

“Clare Hall and King’s College Chapel, Cambridge, from the Banks of the River Cam” / Joseph Mallord William Turner (1793)

 

Smart Infrastructure: Getting More From Strategic Assets

Dr Jennifer Schooling, Director of CSIC;

Dr Ajith Parlikad, CSIC Co-Investigator and Senior Lecturer;

Mark Enzer, Global Water Sector Leader,

Mott MacDonald; Keith Bowers, Principal Tunnel Engineer, London Underground;

Ross Dentten, Asset Information and Configuration Manager, Crossrail;

Matt Edwards, Asset Maintenance and Information Manager, Anglian Water Services;

Jerry England, Group Digital Railway Director, Network Rail;

Volker Buscher, Director, Arup Digital.

 

Smart Infrastructure is a global opportunity worth £2trn-4.8trn. The world is experiencing a fourth industrial revolution due to the rapid development of technologies and digital abundance.

Smart Infrastructure involves applying this to economic infrastructure for the benefit of all stakeholders. It will allow owners and operators to get more out of what they already have, increasing capacity, efficiency and resilience and improving services.

It brings better performance at lower cost. Gaining more from existing assets is the key to enhancing service provision despite constrained finance and growing resource scarcity. It will often be more cost-effective to add to the overall value of mature infrastructure via digital enhancements than by physical enhancements – physical enhancements add `more of the same’, whereas digital enhancements can transform the existing as well.

Smart Infrastructure will shape a better future. Greater understanding of the performance of our infrastructure will allow new infrastructure to be designed and delivered more efficiently and to provide better whole-life value.

Data is the key – the ownership of it and the ability to understand and act on it. Industry, organisations and professionals need to be ready to adjust in order to take advantage of the emerging opportunities. Early adopters stand to gain the most benefit. Everyone in the infrastructure sector has a choice as to how fast they respond to the changes that Smart Infrastructure will bring. But everyone will be affected.

Change is inevitable. Progress is optional. Now is the time for the infrastructure industry to choose to be Smart.

 

LEARN MORE:

Cambridge Centre for Smart Infrastructure and Construction


Perspective: Since this paper is general in its recommendations, we provide examples of specific campus infrastructure data points that are difficult, if not impossible, to identify and “make smart” — either willfully, for lack of funding, for lack of consensus, for lack of understanding or leadership:

    1. Maintenance of the digital location of fire dampers in legacy buildings or even new buildings mapped with BIM.  Doors and ceiling plenums are continually being modified and the As-Built information is usually not accurate.  This leads to fire hazard and complicates air flow and assuring occupant temperature preferences (i.e. uncontrollable hot and cold spots) 
    2. Ampere readings of feeder breakers downstream from the electric service main.  The power chain between the service substation and the end-use equipment is a “no-man’s land” in research facilities that everyone wants to meter but few ever recover the cost of the additional metering.
    3. Optimal air flow rates in hospitals and commercial kitchens that satisfies both environmental air hazards and compartmentalized air pressure zones for fire safety.
    4. Identification of students, staff and faculty directly affiliated with the campus versus visitors to the campus.
    5. Standpipe pressure variations in municipal water systems
    6. Pinch points in municipal sewer systems in order to avoid building flooding.
    7. How much of university data center cost should be a shared (gateway) cost, and how much should be charged to individual academic and business units?
    8. Should “net-zero” energy buildings be charged for power generated at the university central heating and electric generation plant?
    9. How much staff parking should be allocated to academic faculty versus staff that supports the healthcare delivery enterprises; which in many cases provides more revenue to the university than the academic units?
    10. Finally, a classical conundrum in facility management spreadsheets: Can we distinguish between maintenance cost (which should be covered under an O&M budget) and capital improvement cost (which can be financed by investors)

 

 

System Aspects of Electrical Energy

Much economic activity in the global standards system involves products — not interoperability standards. Getting everything to work together — cost effectively and simpler — is our raison d’etre.  

Manufacturers, testing laboratories, conformance authorities (whom we call vertical incumbents) are able to finance the cost of their advocacy — salaries, travel, lobbying, administration — into the cost of the product they sell to the end user (in our cases, estate managers in educational settlements). Our readings of the intent of this technical committee is to discover and promulgate best practice for “systems of products” — i.e. ideally interoperability characteristics throughout the full span of the system life cycle.

To quote Thomas Sowell:

“There are no absolute solutions to human problems, there are only tradeoffs.”  

Many problems have no solutions, only trade-offs in matters of degree.  We explain our lament over wicked problems in our About.

The United States National Committee of  the International Electrotechnical Commission (USNA/IEC) seeks participants and an ANSI Technical Advisory Group (US TAG) Administrator for an IEC subcommittee (Multi-Agent System) developing standards for power system network management.   From the project prospectus:

Standardization in the field of network management in interconnected electric power systems with different time horizons including design, planning, market integration, operation and control.  SC 8C covers issues such as resilience, reliability, security, stability in transmission-level networks (generally with voltage 100kV or above) and also the impact of distribution level resources on the interconnected power system, e.g. conventional or aggregated Demand Side Resources (DSR) procured from markets.

SC 8C develops normative deliverables/guidelines/technical reports such as:

– Terms and definitions in area of network management,
– Guidelines for network design, planning, operation, control, and market integration
– Contingency criteria, classification, countermeasures, and controller response, as a basis of technical requirements for reliability, adequacy, security, stability and resilience analysis,
– Functional and technical requirements for network operation management systems, stability control systems, etc.
– Technical profiling of reserve products from DSRs for effective market integration.
– Technical requirements of wide-area operation, such as balancing reserve sharing, emergency power wheeling.

Individuals who are interested in becoming a participant or the TAG Administrator for SC 8C: Network Management are invited to contact Adelana Gladstein at agladstein@ansi.org as soon as possible.

This opportunity, dealing with the system aspects of electrical energy supply (IEC TC 8), should at least interest electrical engineering research faculty and students involved in power security issues.   Participation would not only provide students with a front-row seat in power system integration but faculty can collaborate and compete (for research money) from the platform TC 8 administers.  We will refer it to the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones.

IEC technical committees and subcommittees


LEARN MORE:

 

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. - Nikola Tesla

Du froid

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

Today we review the literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.

There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Code ignis MMXXVII

“Prometheus creating Man in the presence of Athena” 1802 Jean-Simon Berthélemy

Free public access to the current edition of NFPA’s parent fire safety document is linked below:

2024 NFPA 1 Fire Code 

We attend to occupancy-specific chapters (listed below) because of their significant presence in education communities.

Chapter 25: Grandstands and Bleachers, Folding and Telescopic Seating, Tents and Membrane Structures (N.B)

Chapter 26: Laboratories Using Chemicals

Chapter 29: Parking Garages

Chapter 32: Motion Picture and Television Production Studio Soundstages and Approved Production Facilities

Chapter 35: Animal Housing Facilities

Chapter 36: Telecommunication Facilities and Information Technology Equipment

Chapter 50: Commercial Cooking

Chapter 52: Energy Storage Systems

Some of the chapters reference other titles such as NFPA 45 Standard of Fire Protection for Laboratories Using Chemicals which support risk management in other occupancies.  It is noteworthy that in the 2021 revision cycle of NFPA 1 there are relatively few new concepts regarding education facilities that have been proposed.   You get a sampling of the ideas in play from the transcript of public input for the 2024 edition.

Public Input Report (525 Pages)

Use search terms such as school, college, university, dormitory(ies), laboratory(ies), classroom, children, day-care, student, et cetera for a sense of the ideas in play.

Since the close of the 2021 revision cycle we find a renewed interest in best practice for commercial tents because many communities are now using them for student, staff and faculty spaces owing to the circumstances of the pandemic.   We will follow the action and report it here.

Public input on the 2027 NFPA 1 will be received until April 4, 2024.

We include NFPA 1 on our periodic fire safety colloquia — identified by the mnemonic Prometheus — and march along peak interests.

Campus fire safety is domain relatively well-covered by other organizations such as the Center for Campus Fire Safety and HigherEd Safety so we place NFPA 1 in the middle of our priority tier.   We are more interested in the harmonization of NFPA 1 with a competitor title International Fire Code; published by the International Code Council; to wit:

International Fire Code:   The purpose of this code is to establish the minimum requirements consistent with nationally recognized good practice for proving a reasonable level of life safety and property protection from the hazards of fire, explosion or dangerous conditions in new and existing buildings, structures or premises and to provide a reasonable level of safety to fire fighters and emergency responders during emergency operations

Fire Code: The scope includes, but is not limited to, the following: (1) Inspection of permanent and temporary buildings, processes, equipment, systems, and other fire and related life safety situations (2) Investigation of fires, explosions, hazardous materials incidents, and other related emergency incidents (3) Review of construction plans, drawings, and specifications for life safety systems, fire protection systems, access, water supplies, processes, hazardous materials, and other fire and life safety issues (4) Fire and life safety education of fire brigades, employees, responsible parties, and the general public (5) Existing occupancies and conditions, the design and construction of new buildings, remodeling of existing buildings, and additions to existing buildings (6) Design, installation, alteration, modification, construction, maintenance, repairs, servicing, and testing of fire protection systems and equipment (7) Installation, use, storage, and handling of medical gas systems (8) Access requirements for fire department operations (9) Hazards from outside fires in vegetation, trash, building debris, and other materials (10) Regulation and control of special events including, but not limited to, assemblage of people, exhibits, trade shows, amusement parks, haunted houses, outdoor events, and other similar special temporary and permanent occupancies (11) Interior finish, decorations, furnishings, and other combustibles that contribute to fire spread, fire load, and smoke production (12) Storage, use, processing, handling, and on-site transportation of flammable and combustible gases, liquids, and solids (13) Storage, use, processing, handling, and on-site transportation of hazardous materials (14) Control of emergency operations and scenes (15) Conditions affecting fire fighter safety (16) Arrangement, design, construction, and alteration of new and existing means of egress

Note that both ICC and NFPA parent fire safety documents are developed on coincident 3-year cycles.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony,  Joshua W. Elvove, Joe DeRosier, Casey Grant

door (n.)

Doors have long since been a simple “opening” or “fenestration”.   Doors are “portals”; nodes on the geometry of the Internet of Small Things.  There are 100’s of thousands of these nodes on any single college, university or school district.  First costs run from $1000 per door in a classroom to $100,000 per door in hospitals with maintenance and operation costs commensurate with complexity of the hardware and software needed to maintain integration of the door with building security and energy systems.

We find the bulk of best practice identified in the catalogs of the following accredited standards developers for the United States construction markets:

American National Standards Institute

American Society of Mechanical Engineers

ASHRAE International

ASTM International

Conflicting Requirements of Exit Doors

Standard Practice for Installation of Exterior Windows, Doors and Skylights

Standard Consumer Safety Specification for Child Safety Locks and Latches for Use with Cabinet Doors and Drawers

Repair Methods for Common Water Leaks at Operable Windows and Sliding Glass Doors

Building Industry Consulting Service International (BICSI)

Builders Hardware Manufacturers Association

International Code Council

Institute of Electrical and Electronic Engineers

National Fire Protection Association

Steel Door Institute

The US federal government and all 50-states adapt safety and sustainability concepts from the foregoing publishers; either partially or whole cloth.

Today we examine the moment in the standard of care for doors in education communities in the United States.   Join the colloquium with the login credentials at the upper right of our home page.

Standards Michigan Office Ann Arbor Michigan | 2723 South State Street Suite 150

Recognizing signs and doors for Indoor Wayfinding for Blind and Visually Impaired Persons

Mouna Afif, et al

 

Abstract:  Indoor signage plays an essential component to find destination for blind and visually impaired people. In this paper, we propose an indoor signage and doors detection system in order to help blind and partially sighted persons accessing unfamiliar indoor environments. Our indoor signage and doors recognizer is builded based on deep learning algorithms. We developed an indoor signage detection system especially used for detecting four types of signage: exit, wc, disabled exit and confidence zone. Experiment results demonstrates the effectiveness and the high precision of the proposed recognition system. We obtained 99.8% as a recognition rate.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content