Tag Archives: D4

Loading
loading..

Mobility & Parking

Statement on the Electric Vehicle Zietgeist

University of Michigan Campus Transportation Master Plan

Die Fachhochschule Wedel bei Hamburg

The Invention of the Wheel – The Journey to Civilization 

Today we amble through the literature providing policy templates informing school district, college and university-affiliated transportation and parking facilities and systems.   Starting 2024 we will break up our coverage thus:

Mobility 100 (Survey of both ground and air transportation instructional and research facilities)

Mobility 200 (Ground Transportation)

Mobility 300 (Air Transportation)

Mobility 400 (Reserved for zoning, parking space allocation and enforcement, and issues related to one of the most troublesome conditions in educational settlements)

Today’s session will be the last when we cover both land and air transportation codes, standards, guidelines and the regulations that depend upon all them. We will break out space and aerospace mobility into a separate session — largely because many universities are tooling up square footage and facilities in anticipation of research grants.

Top Deck View


Public consultation originates from the following organizations:

American Center for Mobility

International Code Council

Electric Vehicle Charging

International Electrotechnical Commission

SyC Smart Cities

International Organization for Standardization

Intelligent Transport Systems
Road Vehicles

Institute of Electrical and Electronic Engineers

 Intelligent Transportation Systems Society 

Society of Automotive Engineers (SAE International)

Like many SDO’s the SAE makes it very easy to purchase a standard but makes it very difficulty to find a draft standard open for public review.  It is not an open process; one must apply to comment on a draft standard.  Moreover, its programmers persist in playing “keep away” with landing pages.

Technical Standards for Road Vehicles and Intelligent Vehicle Systems

 

International Code Council

National Fire Protection Association

Electric Vehicle Power Transfer System

Association of Transportation Safety Information Professionals

International Light Transportation Vehicle Association

Non-Emergency Medical Transportation Accreditation Commission

Gallery: Electric Vehicle Fire Risk


Noteworthy:

The public school bus system in the United States is the largest public transit system in the United States. According to the American School Bus Council, approximately 25 million students in the United States ride school buses to and from school each day, which is more than twice the number of passengers that use all other forms of public transportation combined.

The school bus system is considered a public transit system because it is operated by public schools and school districts, and provides a form of transportation that is funded by taxpayers and available to the general public. The school bus system also plays a critical role in ensuring that students have access to education, particularly in rural and low-income areas where transportation options may be limited.

 

Something is always happening in this domain:

A Quiet Rollout: Electric Scooters on Campus

Notre Dame Police Department shares gameday parking restrictions, tips

Electric School Bus Market Size, Industry Share, Analysis, Report and Forecast 2022-2027

Non profit associations proliferate:

American School Bus Council

American Bus Association

Campus Parking and Transportation Association

National Association for Pupil Transportation

National Association of State Directors of Pupil Transportation Services

National School Transportation Association

School Bus Manufacturers Association

…and 50-state spinoffs of the foregoing.  (See our ABOUT for further discussion of education industry non-profit associations)

There are several ad hoc consortia in this domain also; which include plug-in hybrid electric vehicles.  Charging specifications are at least temporarily “stable”; though who should pay for the charging infrastructure in the long run is a debate we have tracked for several revision cycles in building and fire codes.

Because incumbents are leading the electromobility transformation, and incumbents have deep pockets for market-making despite the “jankiness” of the US power grid, we can track some (not all) legislation action, and prospective public comment opportunities.   For example:

S. 1254: Stop for School Buses Act of 2019

S. 1750 Clean School Bus Grant Program

S. 1939 / Smarter Transportation Act

Keep in mind that even though proposed legislation is sun-setted in a previous (116th) Congress, the concepts may be carried forward into the following Congress (117th).

Public consultations on mobility technologies relevant to the education facility industry are also covered by the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.

This topic is growing rapidly and it may well be that we will have to break it up into more manageable pieces.  For the moment, today’s colloquium is open to everyone.  Use the login credentials at the upper right of our home page.

Standing Agenda / Mobility

Gallery: Campus Transportation and Parking

 

Top Deck View

Grand Pump Room

University of Bath: Department of Estates

BSI Group Standards Catalog

BSI Group Standards Catalog

*After the Roman period, Bath remained a small town until the 18th century, when it became a fashionable spa destination for the wealthy. The architect John Wood the Elder designed much of the city’s Georgian architecture, including the famous Royal Crescent and the Circus. Bath also played an important role in the English literary scene, as several famous authors, including Jane Austen, lived and wrote in the city.   During the 19th century, Bath’s popularity declined as other spa towns became fashionable. In the 20th century, the city experienced significant redevelopment and preservation efforts, including the restoration of its Roman baths and the construction of a new spa complex.

Today, Bath is a UNESCO World Heritage Site and a popular tourist destination known for its historical and cultural significance.

Campus Rail Transit

The West Virginia University PRT (Personal Rapid Transit) system is a unique and innovative form of public transportation that serves the WVU campus and the city of Morgantown, West Virginia. The PRT system consists of a series of automated, driverless vehicles that operate on an elevated track network, providing fast and convenient transportation to key destinations on and around the WVU campus.

The PRT system was first developed in the 1970s as a solution to the growing traffic congestion and parking demand on the WVU campus. The system was designed to be efficient, reliable, and environmentally friendly, and to provide a high-tech, futuristic mode of transportation that would appeal to students and visitors.

The PRT system currently operates five different stations, with stops at key campus locations such as the Mountainlair Student Union, the Engineering Research Building, and the Health Sciences Center. The system is free for all WVU students, faculty, and staff, and also offers a low-cost fare for members of the general public.

The PRT system has been recognized as one of the most advanced and innovative public transportation systems in the world, and has won numerous awards for its design, efficiency, and environmental sustainability. It has also become an iconic symbol of the WVU campus, and is often featured in promotional materials and advertising campaigns for the university.

Standards West Virginia

More

Federal Transit Administration

West Virginia Department of Education: School Transportation

“Evaluation of the West Virginia University Personal Rapid Transit System” | A. Katz and A. Finkelstein (Journal of Transportation Engineering, 1987) This paper evaluates the technical and operational performance of the WVU PRT system based on data collected over a six-year period. The authors identify several issues with the system, including maintenance problems, limited capacity, and difficulties with vehicle docking and undocking.

“Modeling of the West Virginia University Personal Rapid Transit System” by J. Schroeder and C. Wilson (Transportation Research Record, 2002) This paper presents a mathematical model of the WVU PRT system that can be used to analyze its performance and identify potential improvements. The authors use the model to evaluate the impact of various factors, such as station dwell time and vehicle capacity, on the system’s overall performance.

“Evaluating the Effectiveness of Personal Rapid Transit: A Case Study of the West Virginia University System” by K. Fitzpatrick, M. Montufar, and K. Schreffler (Journal of Transportation Technologies, 2013) This paper analyzes the effectiveness of the WVU PRT system based on a survey of users and non-users. The authors identify several challenges facing the system, including low ridership, reliability issues, and high operating costs.

Association for Commuter Transportation: Accreditation Standards

 

Energy Standard for Data Centers

Consulting-Specifying Engineer (March 4, 2025): Why and how to adopt the IECC for energy-efficient designs

2024 Update to ASHRAE Position Statements

List of Titles, Scopes and Purposes of the ASHRAE Catalog

Public Review Draft Standards

The parent title of this standard is ASHRAE Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings  and is continually under revision; frequently appearing in electrical engineering design guidelines, construction specifications, commissioning and O&M titles in our industry and others.

ASHRAE 90.4 defines an alternate compliance path, specific to data centers, while the compliance requirements for “non-data center” components are contained in ASHRAE 90.1 .  The 90.4 structure also streamlines the ongoing maintenance process as well ensures that Standards 90.1 and 90.4 stay in their respective lanes to avoid any overlap and redundancies relating to the technical and administrative boundaries.  Updates to ASHRAE 90.1 will still include the alternate compliance path defined in ASHRAE 90.4. Conversely the 2022 Edition of 90.4-2022 refers to ASHRAE 90.1-2022; cross-referencing one another synchronously

Links to noteworthy coverage from expert agencies on the 2022 revisions:

Addendum g modifies Sections 3 and 6 to support the regulation of process heat and process ventilation

HPC Data Center Cooling Design Considerations

ASHRAE standard 90.4 updates emphasize green energy

ASHRAE updated its standard for data centers

How to Design a Data Center Cooling System for ASHRAE 90.4

Designing a Data Center with Computer Software Modeling

This title resides on the standing agenda of our Infotech 400 colloquium; hosted several times per year and as close coupled with the annual meetings of ASHRAE International as possible.  Technical committees generally meet during these meetings make decisions about the ASHRAE catalog.  The next all committee conference will be hosted January 20-24, 2024 in Chicago.  As always we encourage education industry facility managers, energy conservation workgroups and sustainability professionals to participate directly in the ASHRAE consensus standard development process.  It is one of the better facilities out there.

Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

Energy Standard for *Sites* and Buildings


Update: May 30, 2023

Proposed Addendum g makes changes to definitions were modified in section 3 and mandatory language in Section 6 to support the regulation of process heat and process ventilation was moved in the section for clarity. Other changes are added based on comments from the first public review including changes to informative notes.

Consultation closes June 4th


Update: February 10, 2023

The most actively managed consensus standard for data center energy supply operating in education communities (and most others) is not published by the IEEE but rather by ASHRAE International — ASHRAE 90.4 Energy Standard for Data Centers (2019).  It is not required to be a free access title although anyone may participate in its development.   It is copyrighted and ready for purchase but, for our purpose here, we need only examine its scope and purpose.   A superceded version of 90.4 is available in the link below:

Third ISC Public Review Draft (January 2016)

Noteworthy: The heavy dependence on IEEE power chain standards as seen in the Appendix and Chapter 8.  Recent errata are linked below:

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2016errata-5-31-2018-.pdf

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2019errata-3-23-2021-.pdf

We provide the foregoing links for a deeper dive “into the weeds”.  Another addendum has been released for consultation; largely administrative:

ASHRAE 90.4 | Pages 60-61 | Consultation closes January 15, 2023.

It is likely that the technical committee charged with updating this standard are already at work preparing an updated version that will supercede the 2019 Edition.  CLICK HERE for a listing of Project Committee Interim Meetings.

We maintain many titles from the ASHRAE catalog on the standing agenda of our Mechanical, Energy 200/400, Data and Cloud teleconferences.   See our CALENDAR for the next online meeting; open to everyone.


Originally posted Summer 2020.

 

ASHRAE International has released four new addenda to its energy conservation consensus document ASHRAE 90.4-2016 Energy Standard for Data Centers.  This document establishes the minimum energy efficiency requirements of data centers for design and construction, for the creation of a plan for operation and maintenance and for utilization of on-site or off-site renewable energy resources.

It is a relatively new document more fully explained in an article published by ASHRAE in 2016 (Click here).   The addenda described briefly:

Addendum a  – clarifies existing requirements in Section 6.5 as well as introduce new provisions to encourage heat recovery within data centers.

Addendum b  – clarifies existing requirements in Sections 6 and 11 and to provide guidance for taking credit for renewable energy systems.

Addendum d  – a response to a Request for Interpretation on the 90.4 consideration of DieselRotary UPS Systems (DRUPS) and the corresponding accounting of these systems in the Electrical Loss Component (ELC). In crafting the IC, the committee also identified several marginal changes to 90.4 definitions and passages in Section 8 that would add further clarity to the issue. This addendum contains the proposed changes for that aim as well as other minor changes to correct spelling or text errors, incorporate the latest ELC values into Section 11, and to refresh information in the Normative Reference.

Addendum e adds language to Section 11 intended to clarify how compliance with Standard 90.4 can be achieved through the use of shared systems.

Comments are due September 6th.   Until this deadline you may review the changes and comment upon them by by CLICKING HERE

Universitat de Barcelona

 

Proposed Addendum g

Education facility managers, energy conservation workgroups and sustainability professionals are encouraged to participate directly in the ASHRAE standard development process.   Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

The ASHRAE catalog is a priority title in our practice.  This title appears on the standing agenda of our Infotech sessions.  See our CALENDAR for the next online meeting; open to everyone.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Issue: [12-54]

Category: Telecommunications, Infotech, Energy

Colleagues: Mike Anthony, Robert G. Arno, Neal Dowling, Jim Harvey, Mike Hiler, Robert Schuerger, Larry Spielvogel

Workspace / ASHRAE

 

Reliability Analysis for Power to Fire Pumps

Reliability Analysis for Power to Fire Pump Using Fault Tree and RBD

Robert Schuerger | HP Critical Facilities (Project Lead, Corresponding Author) 

Robert Arno | ITT Excelis Information Systems

Neal Dowling | MTechnology

Michael  A. Anthony | University of Michigan

 

Abstract:  One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.

 

 

CLICK HERE to order complete paper

International Zoning Code

ANSI Standards Action: February 2, 2024

National Association of County Engineers

The purpose of the code is to establish minimum requirements to provide a reasonable level of health, safety, property protection and welfare by controlling the design, location, use or occupancy of all buildings and structures through the regulated and orderly development of land and land uses within this jurisdiction.

CLICK IMAGE

Municipalities usually have specific land use or zoning considerations to accommodate the unique needs and characteristics of college towns:

  1. Mixed-Use Zoning: Cities with colleges and universities often employ mixed-use zoning strategies to encourage a vibrant and diverse urban environment. This zoning approach allows for a combination of residential, commercial, and institutional uses within the same area, fostering a sense of community and facilitating interactions between students, faculty, and residents.
  2. Height and Density Restrictions: Due to the presence of educational institutions, cities may have specific regulations on building height and density to ensure compatibility with the surrounding neighborhoods and maintain the character of the area. These restrictions help balance the need for development with the preservation of the existing urban fabric.
  3. Student Housing: Cities with colleges and universities may have regulations or guidelines for student housing to ensure an adequate supply of affordable and safe accommodations for students. This can
    include requirements for minimum bedroom sizes, occupancy limits, and proximity to campus.
  4. Parking and Transportation: Given the concentration of students, faculty, and staff, parking and transportation considerations are crucial. Cities may require educational institutions to provide parking facilities or implement transportation demand management strategies, such as promoting public transit use, cycling infrastructure, and pedestrian-friendly designs.
  5. Community Engagement: Some cities encourage colleges and universities to engage with the local community through formalized agreements or community benefit plans. These may include commitments to support local businesses, contribute to neighborhood improvement projects, or provide educational and cultural resources to residents.

This is a relatively new title in the International Code Council catalog; revised every three years in the Group B tranche of titles.  Search on character strings such as “zoning” in the link below reveals the ideas that ran through the current revision:

Complete Monograph: 2022 Proposed Changes to Group B I-Codes (1971 pages)

We maintain it on our periodic I-Codes colloquia, open to everyone.  Proposals for the 2026 revision will be received until January 10, 2025.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We maintain it on our periodic I-Codes colloquia, open to everyone with the login credentials at the upper right of our home page.

The City Rises (La città che sale) | 1910 Umberto Boccioni


Related:

Signs, Signs, Signs

  1. Reed v. Town of Gilbert (2015): This Supreme Court case involved a challenge to the town of Gilbert, Arizona’s sign code, which regulated the size, location, and duration of signs based on their content. The court held that the sign code was a content-based restriction on speech and therefore subject to strict scrutiny.
  2. City of Ladue v. Gilleo (1994): In this Supreme Court case, the court struck down a municipal ordinance that banned the display of signs on residential property, except for signs that fell within specific exemptions. The court held that the ban was an unconstitutional restriction on the freedom of speech.
  3. Metromedia, Inc. v. San Diego (1981): This Supreme Court case involved a challenge to a San Diego ordinance that banned off-premises advertising signs while allowing on-premises signs. The court held that the ordinance was an unconstitutional restriction on free speech, as it discriminated against certain types of speech.
  4. City of Ladue v. Center for the Study of Responsive Law, Inc. (1980): In this Supreme Court case, the court upheld a municipal ordinance that prohibited the display of signs on public property, but only if the signs were posted for longer than 10 days. The court held that the ordinance was a valid time, place, and manner restriction on speech.
  5. City of Boerne v. Flores (1997): This Supreme Court case involved a challenge to a municipal sign code that regulated the size, location, and content of signs in the city. The court held that the sign code violated the Religious Freedom Restoration Act, as it burdened the exercise of religion without a compelling government interest.

 

Poutine

Standard Poutine

Health Canada: Food safety standards and guidelines

A poutine pilgrimage: What one professor learned by digging into the origins of the iconic Canadian dish

Dalhousie University researcher Sylvain Charlebois, known as “the food professor,” enjoys a poutine at a restaurant in Brisbane, Australia.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content