Tag Archives: D4/1

Loading
loading..

The Seven Sins of Greenwashing

“Eco-friendly”, “Green”, “Bio”… Companies are increasingly using those tags as a signal to consumers of their environmental awareness. Yet also on the rise is a public concern about potential corporate lies in this subject, a phenomena labelled as “greenwashing”.

According to IESE professor Pascual Berrone, “many companies highlight one green positive aspect of their product or service, and hide the true impact that its production has on the environment”. With more and more NGO’s act as public watchdogs, “the consequences of getting caught can be, in terms of reputation but also economically, severe”, he says.

Universidad de Navarra | Iruña

Uno a uno

Building Environment Design

Disaster 500

During today’s session we approach disaster avoidance, management and recovery literature from a different point of view than our customary approach — i.e. what happens when, a) there is failure to conform to the standard, b) there is no applicable standard at all.  This approach necessarily requires venturing into the regulatory and legal domains.  We will confine our approach to the following standards development regimes:

  1. De facto standards: These are standards that are not officially recognized or endorsed by any formal organization or government entity, but have become widely adopted by industry or through market forces. Examples include the QWERTY keyboard layout and the MP3 audio format.
  2. De jure standards: These are standards that are formally recognized and endorsed by a government or standard-setting organization. Examples include the ISO 9000 quality management standard and the IEEE 802.11 wireless networking standard.
  3. Consortium standards: These are standards that are developed and maintained by a group of industry stakeholders or organizations, often with the goal of advancing a particular technology or product. Examples include the USB and Bluetooth standards, which are maintained by the USB Implementers Forum and the Bluetooth Special Interest Group, respectively.
  4. Open standards: These are standards that are freely available and can be used, implemented, and modified by anyone without restriction. Examples include the HTML web markup language and the Linux operating system.
  5. Proprietary standards: These are standards that are owned and controlled by a single organization, and may require payment of licensing fees or other restrictions for use or implementation. Examples include the Microsoft Office document format and the Adobe PDF document format.
  6. ANSI accredited standards developers with disaster management catalogs

We may have time to review State of Emergency laws on the books of most government agencies; with special attention to power blackout disasters.

Use the login credentials at the upper right of our home page.

Case Briefings


Managing Disaster with Blockchain, Cloud & IOT

Readings / Emergency Telecommunication Plans

Homeland Power Security

Dutch Institute for Fundamental Energy Research

“DIFFER” is a research institute domiciled at TU/e that is focused on advancing the development of sustainable energy technologies, such as fusion energy and solar fuels. It conducts fundamental research on plasma physics and materials science to understand the behavior of matter at extremely high temperatures and under extreme conditions.

DIFFER also collaborates with universities, research institutions, and industry partners to translate their research into practical applications. The institute’s ultimate goal is to develop new and innovative solutions to meet the world’s growing demand for energy while reducing greenhouse gas emissions and environmental impact.  

Among its findings and recommendations: “Electrochemical Production of Ammonia from Renewable Energy: A Thermodynamic Analysis” published in the Journal of The Electrochemical Society in 2018, which evaluated the thermodynamic feasibility of using renewable energy to produce ammonia, an important fertilizer, through electrochemical processes.

N.B. Ammonia can be deployed for energy conservation purposes in various ways, such as:

  1. Energy storage: Ammonia can be used as a means of storing energy from renewable sources, such as wind and solar power, in the form of chemical energy. This stored energy can be released by converting ammonia back into electricity through fuel cells or by burning it in a combustion engine.
  2. Power generation: Ammonia can be used directly as a fuel in combustion engines or turbines to generate electricity, without emitting greenhouse gases or other harmful pollutants.
  3. Heating and cooling: Ammonia can be used as a refrigerant or heat transfer fluid in industrial processes, air conditioning systems, or district heating networks, reducing the energy required for cooling and heating.
  4. Fuel for transportation: Ammonia can be used as a fuel for ships, trains, or other heavy-duty vehicles, reducing emissions of greenhouse gases and other pollutants.

However, it is worth noting that the deployment of ammonia for energy conservation purposes requires the development of suitable technologies for its production, transportation, and storage, as well as the necessary infrastructure to support its use.

Nederland

Kitchen Fires in High-rise Residential Buildings

 

Numerical Study of Kitchen Fires in High-rise Residential Buildings

Jing Liu – Peng Wang – Guangrui Song

Southwest Jiaotong University

 

Abstract:  Open kitchen design is becoming popular in small units in high-rise residential buildings. This design increases the possibility that fires originating in the cooking area would spread beyond its origin. Effect of cabinet properties and wind on the fire hazards of open kitchen is numerically studied. It is found that if there are combustible items adjacent to the cooking area it helps the fire to spread giving a big fire and the wind may cause the fire spread vertically along the building exterior wall.

CLICK HERE to order complete article

Property Loss Prevention

Left Panel Of George Julian Zolnay’s Allegorical “Academic, Business & Manual Education” Granite Frieze At Francis L. Cardozo High School (Washington, DC)

All fifty United States have their own “signature” disaster with which to reckon; some more than others.   California has earthquakes, Florida has hurricanes, Missouri has floods; and so on,  Life and property loss are preventable; but losses will persist because technical solutions notwithstanding, culture determines human behavior.  It is impossible to be alive and safe.

FM Global is one of several organizations that curate privately developed consensus products that set the standard of care for many industries; education communities among them.  These standards contribute to the reduction in the risk of property loss due to fire, weather conditions, and failure of electrical or mechanical equipment.  They incorporate nearly 200 years of property loss experience, research and engineering results, as well as input from consensus standards committees, equipment manufacturers and others.

If you want FMGlobal as your insurance carrier, or to supplement your organization’s self-insurance program, then you will likely be assigned an FMGlobal conformity professional.

A scan of its list data sheets since January indicate a number of noteworthy updates of documents establishing minimum requirements for safety technologies common in education facilities:

 

Note that the bulk of the safety concepts in the foregoing titles incorporate by reference the safety concepts that cross our radar every day   FM Global provides direct access to the full span of its documents at this link:

FM GLOBAL PROPERTY LOSS PREVENTION DATA SHEETS

Note FM Global updates its standards every three months:

Standards in Progress

To respond to calls for public consultation you will need to set up (free) access credentials.

We keep FMGlobal titles — and the literature of other property insurers involved in standards setting — on the standing agenda of our Risk, Snow and Prometheus colloquia.  See our CALENDAR for the next meeting.

Issue: [Various]

Category: Risk, Facility Asset Management


More

Deloitte University: Innovation in Insurance

University of Pennsylvania demonstrates the critical importance of sprinklers in dormitories

Syracuse University presents an eclectic mix of risk management challenges

Jackson Laboratory

Representative force majeure clauses.

Example 1: Basic Force Majeure Clause

“Neither party shall be liable for any failure or delay in performance of its obligations under this agreement due to events beyond its reasonable control, including but not limited to acts of God, war, terrorism, civil commotion, labor strikes, and natural disasters. The affected party shall promptly notify the other party of the force majeure event and take reasonable steps to mitigate its impact on performance. During the continuance of such events, the obligations of the affected party shall be suspended, and the time for performance shall be extended.”

Example 2: Detailed Force Majeure Clause

“In the event that either party is unable to perform its obligations under this agreement due to a force majeure event, the affected party shall promptly notify the other party in writing, specifying the nature and anticipated duration of the force majeure event. Force majeure events shall include, but are not limited to, acts of God, strikes, lockouts, government action or inaction, war, terrorism, epidemics, and natural disasters. The affected party shall use reasonable efforts to overcome or mitigate the effects of the force majeure event. If the force majeure event continues for a period of [specified duration], either party may terminate this agreement by providing written notice to the other party.”

 

 

Climate Psychosis

A conversation with Bjorn Lomborg, a visiting fellow at the Hoover Institution, the president of the Copenhagen Consensus Center, and one of the foremost climate experts in the world today. His new book — “False Alarm: How Climate Change Panic Costs Us Trillions, Hurts the Poor, and Fails to Fix the Planet” — is an argument for treating climate as a serious problem but not an extinction-level event requiring such severe and drastic steps as rewiring a large part of the culture and the economy.

How easy it is to make people believe a lie, and [how] hard it is to undo that work again! - Mark Twain

Dialectic: Climate Change

Mass Formation Psychosis

Centre for Studies of Climate Change Denialism

Readings

Brookings: Michael Crichton and Global Warming

Security 300

I think every school needs a protection plan with a either police officer or certified armed security. - Wayne LaPierre

Today we run a status check on the stream of technical and management standards evolving to assure the highest possible level of security for education communities.  The literature expands significantly from an assortment of national standards-setting bodies, trade associations, ad hoc consortia and open source standards developers.  CLICK HERE for a sample of our work in this domain.

School security is big business in the United States.  A few years ago we could deal with physical security separately from cybersecurity.  Not so much anymore.  In today’s colloquium — essentially a survey module presenting a broad overview — we seek to understand product and interoperability standards for the following technologies:

Video surveillance: indoor and outdoor cameras, cameras with night vision and motion detection capabilities and cameras that can be integrated with other security systems for enhanced monitoring and control.

Access control: doors, remote locking, privacy and considerations for persons with disabilities.

As time permits, we will reckon with first cost and long-term maintenance cost, including software maintenance.

According to a report by Markets and Markets, the global school and campus security market size was valued at USD 14.0 billion in 2019 and is projected to reach USD 21.7 billion by 2025, at a combined annual growth rate of 7.2% during the forecast period.  Another report by Research And Markets estimates that the US school security market will grow at a compound annual growth rate of around 8% between 2020 and 2025, driven by factors such as increasing incidents of school violence, rising demand for access control and surveillance systems, and increasing government funding for school safety initiatives.

Noteworthy: The combined annual growth rate of the school and campus security market is greater than the growth rate of the education “industry” itself.


Education Community Safety catalog is one of the fast-growing catalogs of best practice literature.  We link a small sample below and update ahead of every Security colloquium.

Executive Order 13929 of June 16, 2020 Safe Policing for Safe Communities

Clery Act

National Center for Education Statistics: School Safety and Security Measures

International Code Council

2021 International Building Code

Section 1010.1.9.4 Locks and latches

Section 1010.2.13 Delayed egress.

Section 1010.2.14 Controlled egress doors in Groups I-1 and I-2.

Free Access: NFPA 72 National Fire Alarm and Signaling Code

Free Access: NFPA 731 Standard for the Installation of Premises Security Systems

IEEE: Design and Implementation of Campus Security System Based on Internet of Things

APCO/NENA 2.105 Emergency Incident Data Document 

C-TECC Tactical Emergency Casualty Care Guidelines

Department of Transportation Emergency Response Guidebook 2016

NENA-STA-004.1-2014 Next Generation United States Civic Location Data Exchange Format

Example Emergency Management and Disaster Preparedness Plan (Tougaloo College,  Jackson, Mississippi)

Partner Alliance for Safer Schools

Federal Bureau of Investigation Academia Program

Most Dangerous Universities in America

Federal Bureau of Investigation: Uniform Crime Reporting Program

ICYMI: Guide to Campus Security

 


Security 100

Security 200

Security 400

Clery Act

The federal requirement for a school safety plan is outlined in the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act, commonly known as the Clery Act.  The Clery Act requires all colleges and universities that participate in federal student financial aid programs to develop and publish an annual security report that includes certain safety-related policies, procedures, and crime statistics.

The Clery Act requires that schools include specific information in their security reports, including:

  1. The school’s crime statistics for the previous three years.
  2. Information about the school’s policies and procedures related to campus safety and security.
  3. Information about crime prevention programs and services offered by the school.
  4. Information about the school’s emergency response and evacuation procedures.
  5. Information about the school’s policies and procedures for addressing and reporting incidents of sexual assault, domestic violence, dating violence, and stalking.
  6. Information about the school’s drug and alcohol policies and prevention programs.

While the Clery Act only applies to colleges and universities that receive federal student financial aid, many states and school districts have adopted similar requirements for K-12 schools to develop and implement comprehensive safety plans. These plans may include many of the same elements as Clery Act-compliant security reports, such as emergency response protocols, crime prevention programs, and policies for addressing incidents of violence and harassment.

Example Reports:

Michigan State University: 2022 Annual Security & Fire Safety Report

Davenport University: 2022 Annual Security and Fire Safety Report

Central Michigan University: 2022 Annual Security & Fire Safety Report

 


March 2020 Update

The most recent changes to the Clery Act were made in March 2020, when the Department of Education published the final rule amending the Clery Act regulations. The changes include:

  1. Expanding the definition of sexual harassment to include quid pro quo and hostile environment harassment, which aligns with Title IX regulations.
  2. Requiring institutions to report stalking and domestic violence in addition to existing crime categories.
  3. Adding hazing as a reportable crime category.
  4. Requiring institutions to compile and publish hate crime statistics for all categories of prejudice, including gender identity and national origin.
  5. Requiring institutions to include specific policies and procedures in their annual security reports, such as those related to prevention and response to sexual assault, domestic violence, dating violence, and stalking.
  6. Requiring institutions to provide survivor-centered and trauma-informed services to individuals who report or experience sexual assault, domestic violence, dating violence, or stalking.
  7. Requiring institutions to include information about prevention and response to cyberbullying and electronic harassment in their annual security reports.
  8. Allowing institutions to provide annual security reports electronically and requiring institutions to make their crime statistics publicly available on their website.

These changes aim to strengthen the Clery Act’s requirements for campus safety and to better address sexual harassment and other forms of violence on college and university campuses.

Clery Act Appendix for FSA Handbook

Every new federal law involving paperwork creates an uncountable number of trade associations and compliance enterprises.  A simple web search on “Cleary Act” will reveal half the internet full of pages for more information.  Our focus is on the user-side — i.e. making inquiries and pushing back on the gaudy proliferation of regulatory requirements, the integrity of purpose of the law notwithstanding.  We maintain this title on the standing agenda on all of our Security colloquia.  See our CALENDAR for the next online meeting; open to everyone.

K-12 School Security

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content