Tag Archives: D5

Loading
loading..

Sports Equipment & Surfaces

“The National Game” 1889 Arthur Streeton

 

 

 

Sport is the bloom and glow of a perfect health.

—Ralph Waldo Emerson

 

Sport programs, facilities and equipment support one of the most visible and emotionally engaging enterprises in the education communities.   These programs are central to the brand identity of the community and last, but not least, physical activity keeps our young people healthy in body and mind.

ASTM International is one of the first names among the 300-odd ANSI accredited standards setting organizations whose due processes discover and promulgate the standard of care for the design, construction, operations and maintenance of the facilities that support these enterprises.   The parent committee is linked below:

ASTM Committee F08 on Sports Equipment, Playing Surfaces, and Facilities

While ASTM bibliography is largely product-oriented, there are many titles that set the standard of care for sport enterprises and the accessories to these enterprises.  To identify a few:

ASTM 1487-17 Standard Consumer Safety Performance Specification for Playground Equipment for Public Use

ASTM F1774  Standard Specification for Climbing and Mountaineering Carabiners

ASTM F2060-00(2011) Standard Guide for Maintaining Cool Season Turfgrasses on Athletic Fields

ASTM F1703-13 Standard Guide for Skating and Ice Hockey Playing Facilities

ASTM F1953-10 Standard Guide for Construction and Maintenance of Grass Tennis Courts

ASTM F1081-09(2015) Standard Specification for Competition Wrestling Mats

ASTM F2950-14 Standard Safety and Performance Specification for Soccer Goals

ASTM F2461-16e1 Standard Practice for Manufacture, Construction, Operation, and Maintenance of Aquatic Play Equipment

When the General Requirements of an athletic facility construction project indicates: “Conform to all applicable standards” then, in the case of an sport facility, the ASTM title is likely the document that defines the standard of care from a product standpoint.  Interoperability of the products in a sport setting are quite another matter.

At the international level, we track action in ISO/TC 83 Sports and other recreational facilities and equipment administered globally by the Deutsches Institut für Normung e.V.   ASTM International is ANSI’s Technical Advisory Group for  this committee.

University of Maine

The ASTM standards development process depends heavily on face-to-face meetings — typically two times per year – in different parts of the United States.   The benefit of this arrangement lies in the quality of discussion among subject matter experts that results produced from face-to-face discussion.  The price to pay for this quality, however, lies in the cost of attendance for the user-interest in the education industry.   Relatively few subject matter experts directly employed by a school district, college or university who are charged with lowering #TotalCostofOwnership can attend the meetings.   Many of the subject matter experts who are in attendance at the ASTM meetings from the education industry tend to be faculty who are retained by manufacturers, insurance, testing laboratories, conformity and compliance interests.  (See our discussion of Incumbent Interests)

That much said, ASTM welcomes subject matter experts on its technical committees (Click here)  We encourage participation by end users from the education industry — many of them in the middle of athletic facility management organization charts.   The parent committee meets twice a year; after which we usually find public review redlines developed during those meetings to hit our radar.  The link to the schedule of face-to-face meetings appears below:

F08 Meetings

Note that the August 2020 cancelled but the November 2020 meeting still appears on the schedule.  It is likely that much of the committee work will be done online.

We are required to review draft ASTM consensus products with some care — owing to copyright restrictions — so we do it interactively online during teleconferences devoted to Sport.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [7-7] [10-32] [13-165] [20-156] 

Category: Sport, Management, Risk Management

Contact: Mike Anthony, Jack Janveja, George Reiher, Richard Robben

Synthetic Turf Guidelines

 

ICC 300 Bleachers, Folding Seating, Grandstands

COMPLETE MONOGRAPH: 2024 GROUP A PROPOSED CHANGES TO THE I-CODES

“View of the Colosseum” 1747 Giovanni Paolo Panini

 

Play is the making of civilization—how one plays the game

more to the point than whether the game is won or lost.

 

The purpose of this standard is to establish the minimum requirements to safeguard health, safety and general welfare through structural strength, means of egress facilities, stability and safety to life and property relative to the construction, alteration, repair, operation and maintenance of new and existing temporary and permanent bench bleacher, folding and telescopic seating and grandstands.  This standard is intended for adoption by government agencies and organizations setting model codes to achieve uniformity in technical design criteria in building codes and other regulations.

FREE ACCESS: Standard on Bleachers, Folding and Telescopic Seating, and Grandstands

We are tracking the changes in the transcripts linked below:

ICC 300-2020 edition Public Input Agenda – January 2022

ICC 300-2017 edition Public Comment Draft – October 2017

Consensus Committee on Bleacher Safety (IS-BLE)

This title is on the standing agenda of our Sport, Olahraga (Indonesian), رياضة (Arabic), colloquia.   You are welcomed to join us any day at with the login credentials at the upper right of our home page.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Virtual reality technology in evacuation simulation of sport stadiums

National Center for Spectator Sports Safety and Security

Code of Practice for Emergency Sound Systems at Sports Venues

 


Posted December 6, 2019

At the April International Code Council Group A Hearings there were three candidate code changes related to the safety standard of care for athletic venues:

E104-18 (§ 1017 regarding exit travel distances) | PDF Page 218 of the Complete Monograph

F9-18 (§ 304 regarding spaces under bleachers) | PDF Page 1021 of the Complete Monograph

F135-18 (§ 907 regarding communication systems for open air bleachers) | PDF Page 1296 of the Complete Monograph

These concepts will likely be coordinated with another ICC regulatory product — ICC 300 – Standard on Bleachers, Folding and Telescopic Seating, and Grandstands — covered here previously.   ICC 300 is a separate document but some of the safety concepts track through both.

The ICC Public Comment Hearings on Group A comments in Richmond Virginia ended a few days ago (CLICK HERE).   The balloting is being processed by the appropriate committee and will be released soon.  For the moment, we are happy to walk through the proposed changes – that will become part of the 2021 International Building Code — any day at 11 AM Eastern time.   We will walk through all athletic and recreation enterprise codes and standards on Friday, November 2nd, 11 AM Eastern time.   For access to either teleconference, click on the LIVE Link at the upper right corner of our home page.

Issue: [15-283]

Category: Athletics & Recreation, Architectural, Public Safety

Contact: Mike Anthony, Richard Robben, Jack Janveja

Link to our ICC Workspace

LEARN MORE:

 


Posted October 19, 2017

The International Code Council has launched a new revision cycle for its consensus document — ICC 300 – Standard on Bleachers, Folding and Telescopic Seating, and Grandstands.  The purpose of the effort is the development of appropriate, reasonable, and enforceable model health and safety provisions for new and existing installations of all types of bleachers and bleacher-type seating, including fixed and folding bleachers for indoor, outdoor, temporary, and permanent installations. Such provisions would serve as a model for adoption and use by enforcement agencies at all levels of government in the interest of national uniformity.

Comments are due December 4th.  The document is free.  You may obtain an electronic copy from: https://www.iccsafe.org/codes-techsupport/standards/is-ble/.  Comments may be sent to Edward Wirtschoreck, (888) 422-7233, ewirtschoreck@iccsafe with copy to psa@ansi.org)

* With some authority, we can claim that without Standards Michigan, many education industry trade associations would not be as involved in asserting the interest of facility managers in global consensus standards development processes.   See ABOUT.   

Pool, Spa & Recreational Waters

“Innenansicht des Kaiserbades in Aachen” | Jan Luyken (1682)

Education communities provide a large market for recreational and therapeutic water technology suppliers.  Some of the larger research universities have dozens of pools including those in university-affiliated healthcare facilities.  Apart from publicly visible NCAA swimming programs there are whirpools in healthcare facilities and therapeutic tubs for athletes in other sports.   Ownership of these facilities requires a cadre of conformance experts to assure water safety.

NSF International is one of the first names in this space and has collaborated with key industry stakeholders to make pools, spas and recreational water products safer since 1949.   The parent document in its suite is NSF 50 Pool, Spa and Recreational Water Standards  which  covers everything from pool pumps, strainers, variable frequency drives and pool drains to suction fittings, grates, and ozone and ultraviolet systems.  

The workspace for this committee is linked below:

Joint Committee on Recreational Water Facilities

(Standards Michigan is an observer on this and several other NSF committees and is the only “eyes and ears” for the user interest; arguably the largest market for swimming pools given their presence in schools and universities.)

There are 14 task groups that drill into specifics such as the following:

Chemical feeders

Pool chemical evaluation

Flotation systems

Filters

Water quality

Safety surfacing

The meeting packet is confidential to registered attendees.  You may communicate directly with the NSF Joint Committee Chairperson, Mr. Tom Vyles (admin@standards.nsf.org) about arranging direct access as an observer or technical committee member.   

Almost all ANSI accredited technical committees have a shortage of user-interests (compliance officers, manufacturers and installers usually dominate).  We encourage anyone in the education facility industry paying the bill for the services of compliance officers, manufacturers and installers to participate. 

We maintain this title on the standing agenda of our Water and Sport colloquia.  See our CALENDAR for the next onine meeting; open to everyone.

Fullerton College

Issue: [13-89]

Category: Water, Sport

Colleagues: Mike Anthony, Ron George, Larry Spielvogel


More

Model Aquatic Health Code

IAPMO Swimming Pool & Spa Standards 

UL 1081 Standard for Swimming Pool Pumps, Filters, and Chlorinators | (UL Standards tend to be product standards so we rank them lower in our priority ranking than interoperability standards.)

Aquatic Health Code

Swimming, Water Polo and Diving Lighting

 

“In swimming, there are no referees, no foul lines,

no time-outs, and no substitutions.

It’s just you and the water.” – Unknown

 

 

https://standardsmichigan.com/australia/

There are several specific problems that swimming pool overhead lighting aims to solve:

  1. Visibility: Swimming pool overhead lighting is designed to improve visibility in and around the pool. This is important for safety reasons, as it helps swimmers see where they are going and avoid obstacles or hazards.
  2. Aesthetics: Overhead lighting can enhance the appearance of the swimming pool by creating a visually appealing atmosphere. This is especially important for commercial pools where the aesthetics can be an important factor in attracting customers.
  3. Functionality: Overhead lighting can provide additional functionality by allowing the pool to be used during evening hours or in low light conditions. This can increase the usability of the pool and make it more appealing to users.
  4. Energy efficiency: Modern overhead pool lighting solutions are designed to be energy-efficient, reducing the overall energy consumption and operating costs of the pool.
  5. Longevity: Overhead pool lighting must be designed to withstand exposure to water, chlorine, and other harsh chemicals, as well as exposure to the elements. The lighting system must be durable and reliable to ensure longevity and prevent costly repairs or replacements.

Overall, swimming pool overhead lighting is an important component of a safe, functional, and visually appealing pool. It provides illumination for visibility, enhances aesthetics, and improves functionality, while also being energy-efficient and durable.

After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For almost all athletic facilities,  the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

During water sport season the document linked below provides information to illumination designers and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next colloquium on Sport facility codes and standards  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs


More

Time Standards

Sport Lighting

Sport Lighting

Athletic and recreational sports enterprises are important features in education communities; supportive of brand identity and cohort creation.  Assuring the safety and sustainability of these assets is informed by several best practice titles; among them the Illuminating Engineering Society recommended practice RP-6-15 Sports and Recreational Area Lighting  From the project prospectus:

The purpose of RP-6-15  is to provide the reader with recommendations to aid in the design of sports lighting systems. Popular sports, such as baseball, tennis, basketball and football as well as recreational social activities, such as horseshoe pitching and croquet are covered. Venues for spectators of amateur, collegiate, and professional sports are complex facilities that should provide not only for the spectators, but also the equipment used in modern sports broadcasting. This document does not address those needs, so the reader should look for guidance from the sports league or the project consultant.
Sports lighting systems consume power which over time can be significant, and IES RP-6-15 defines methods for maximizing energy efficiency.

The IES-suite joins standards developed by the International Code Council (International Building Code), the Institute of Electrical and Electronic Engineers (IEEE 3001.9) and the National Fire Protection Association (NFPA 70) that must be applied skillfully by design professionals and understood by athletic facility managers.  Other consensus standards developers such as the American Society of Heating and Refrigeration Engineers and the Entertainment Services and Technology Association were moving into this domain before the circumstances of the pandemic.

We always encourage our colleagues in the education industry to do so themselves; starting with the links below:

Committees

IES Standards Open for Public Review

Comments on Draft “IES TM-39  Technical Memorandum: Quantification and Specification of Flicker” will be received until August 12th

Keep in mind that the IES typically deals with the application of best practice in illumination.  It neither covers the reliability of the power systems nor the power chain to the luminaries.  Recommended practice for the power chain are now being developed by the IEEE Industrial Applications Society; specifically IEEE 3001.9 – Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities.  The IEEE Education & Healthcare Facilities Committee pulls together ALL the standards — ICC, IEEE, IEC, NFPA, IES, ASHRAE, ASTM, ESTA and any other emergent consensus or open source documents that might set the standard of care for the education industry.

University of Michigan

The IEEE E&H Committee meets online 4 times monthly in Europe and the United States; and those meetings are open to the public (CLICK HERE).   Additionally, we set aside one hour every month to walk through the entire suite of standards for sports and recreation facilities.   See our CALENDAR for the date of our next Athletic & Recreation standards teleconference.  Login credential are at the upper right of our home page

Issue: [16-132]

Category: Electrical, Athletics & Recreation

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

 

Fine Arts 300

Comments on the Second Draft of NFPA 909 — Cultural Resource Property Protection — will be received until 3 October 2024

“Wir haben Kunst, damit wir nicht

an der Wahrheit zugrunde gehen”

Friedrich Wilhelm Nietzsche

Not every student is passionate about Graph Algorithms, Green Policy or coding the Internet of Things but wants to devote their energy and talent to making the world a better place by making the world a more beautiful place.  Spaces for the “creatives” among them are elevated risk spaces.   Today we examine the literature for designing, building and maintaining these occupancies in the safest and most sustainable way; among them the spaces for textile research and fashion design; usually co-mingled with drawing, painting, and textile creation space.

The garment industry is multi-disciplinary and is larger than the energy industry.  It contributes to the standard for civilization; even though subtly so.   For this reason, starting 2023, we will break down our coverage of the literature that supports the fashion industry from the fine arts domain in separate colloquia every quarter.

Fine Arts 200.   Exploration of best practice for spaces used for various forms of creative expression that are appreciated for their artistic or aesthetic value, often involving skills and techniques that require specialized training and expertise. 

    • Painting: The application of pigment to a surface, such as canvas or paper, to create images or visual compositions using techniques like oil, acrylic, watercolor, or tempera.
    • Sculpture: The creation of three-dimensional artworks by shaping and manipulating materials such as stone, wood, metal, or clay.
    • Drawing: The use of lines, marks, or other materials to create images or representations on paper, canvas, or other surfaces.
    • Printmaking: The creation of multiple copies of an image from a master plate or block, using techniques like engraving, etching, lithography, or screen printing.
    • Photography: The use of a camera to capture and create visual images, often through techniques such as exposure, composition, and processing.
    • Architecture: The design and construction of buildings and structures, involving artistic elements such as form, space, materials, and aesthetics.
    • Ceramics: The creation of pottery or ceramic objects using techniques like wheel throwing, hand-building, or glazing.
    • Mixed media: The combination of different artistic materials or techniques in a single artwork, such as collage, assemblage, or installations.
    • Conceptual art: The creation of artworks that prioritize ideas, concepts, and intellectual or philosophical aspects over traditional aesthetic or material considerations.

Fashion 300.  Best practice literature for the spaces needed for the creation of artworks using textiles and fibers, such as weaving, quilting, or embroidery.  Research and teaching spaces in this domain; at the foundation of the garment industry — one of the largest sectors in the economy in any nation — present surprising challenges

See our CALENDAR for a schedule of those session.

Fine Arts 200

US-based standards developers with a footprint in the fine arts domain:

ASTM International

Committee D13 on Textiles Celebrates a Century

International Code Council

2021 International Building Code: Section 305 Educational Group E

Underwriters Laboratories

Lorem ipsum (product testing: kiln heat specifications, fabric and paint flammability, wet and dry fire extinguishing systems, etc.)

National Fire Protection Association

Art, Design & Fashion Studios

Institute of Electrical and Electronic Engineers

Leveraging User-Provided Noisy Labels for Fashion Understanding

Fuzzy Logic in Personalized Garment Design

Institutional Guidelines

St. Louis Community College

Federal Regulations & Recommendations

Environmental Health and Safety in the Arts Guide for K-12 School, Colleges and Artisans

Global standard developers:  (partial list)

Eurocodes

Illumination Art

Textiles

Labeling of Hazardous Art Materials Act

Open to everyone.  Use the login credentials at the upper right of our home page.

Emergency sound systems at sports venues

University of Bolton Lancashire

A rare find in best practice literature is a title that slices horizontally through a number of “silos” owned by US-based domain incumbents such as NFPA, ICC, IEEE and others.  Several occupancy classifications run interstitially and present challenging risk aggregations–similarly recognized in the EU–when 100,000 people must be put out of harms way in less than 60 seconds.  One such title is Code of Practice: BS 7827 Designing, specifying, maintaining and operating emergency sound systems for sports grounds, large public buildings, and venues.  From the project prospectus:

Maintenance, Emergency measures, Safety devices, Reports, Crowd safety, Certification (approval), Inspection, Audio systems, Forms (paper), Speech transmission systems, Reliability, Instructions for use, Personnel, Sound intensity, Approval testing, Training, Audio equipment, Performance, Stadia, Warning devices, Electric power systems, Alarm systems, Signal distortion, Sports facilities, Safety measures, Public-address systems, Audibility, Acoustic measurement, Reception, Sound reproduction, Buildings, Control panels

The current 2019 Edition was released October 2019 and is assumed to be stable.  You can tell by the list of normative references from European Union standards developers that event safety is an established discipline and one that requires continual attention despite the circumstances of the pandemic.

Michigan Stadium is the largest university-owned sports venue in the world. with nominal seating capacity of 110,000 and auxiliary enterprises that add another 20,000.

More information about how our colleagues may contribute to the development of future revisions to this titles should communicate directly with BSI Group Technical Committee EPL/100.  We collaborate with European Union electrotechnical professionals through the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones.

We maintain this title on the standing agenda of our Sport and Global colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue:[19-158]

Category: Sport, Global, Information & Communications Technology, Life Safety

Colleagues: Mike Anthony, Jim Harvey, Mike Hiler

 

 

 

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content