Tag Archives: November

Loading
loading..

“Stopping By Woods on a Snowy Evening”

Randall Thompson’s “Frostiana” is a choral cycle based on the poems of Robert Frost. The cycle consists of settings for mixed chorus and piano, and it was premiered in 1959. “Frostiana” was commissioned to celebrate the bicentennial of the town of Amherst, Massachusetts, and it features seven of Frost’s poems set to music by Thompson.

“Stopping by Woods on a Snowy Evening” is one of the poems included in the “Frostiana” cycle. The composition captures the reflective and contemplative mood of Frost’s poem, where the narrator pauses to admire the beauty of a snowy evening in a quiet forest. Randall Thompson’s musical setting adds another layer to Frost’s words, enhancing the emotional impact of the poem.

Thompson’s approach in “Frostiana” is characterized by its accessibility and tonal clarity. His settings aim to convey the meaning and atmosphere of Frost’s poetry through the expressive power of choral music. The entire “Frostiana” cycle is a celebration of both Thompson’s skill as a composer and Frost’s enduring contribution to American literature.

Acoustics

 

Allied Trade Specialist

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MIL-SPEC catalog and its evolution have had a significant impact on various industries beyond the military sector. Many civilian industries have adopted military standards as a benchmark for quality, reliability, and compatibility in their products and processes.

World War II Era:

The MIL-SPEC system traces its roots back to the World War II era when the U.S. military faced challenges in coordinating manufacturing efforts across multiple suppliers.  To address these challenges, the military began developing specifications and standards that detailed the requirements for various equipment and materials, including dimensions, materials, performance criteria, and testing procedures.

Post-World War II:

After World War II, the MIL-SPEC catalog expanded significantly to cover a wide range of military equipment, ranging from electronics and aircraft components to clothing and food supplies.  The standards were continuously updated and revised based on technological advancements, lessons learned, and evolving military needs.

Evolution into MIL-STD:

In the 1950s and 1960s, the MIL-SPEC system evolved into the Military Standard (MIL-STD) system to provide even more comprehensive and detailed specifications.  MIL-STD documents incorporated a broader scope of requirements, including design criteria, quality control processes, and test methodologies.  The MIL-STD system aimed to ensure consistent design and manufacturing practices across contractors and suppliers.

MIL-STD Transition to Commercial Standards:

Over time, the reliance on MIL-STDs started to decline, and there was a shift towards adopting commercial standards whenever possible.  This transition allowed the military to benefit from the advancements and cost efficiencies of commercial technologies.  However, certain critical military-specific standards, such as those related to security and specialized equipment, continued to be maintained within the MIL-STD framework.

DoD’s Transition to Performance-Based Specifications:

In recent years, the DoD has been moving away from prescriptive specifications (MIL-STDs) towards performance-based specifications. Performance-based specifications focus on defining the desired outcomes and performance requirements while allowing contractors greater flexibility in meeting those requirements. This approach encourages innovation, cost-effectiveness, and broader industry participation in military contracts.

Welding Standards

Flags

A flag stands for a set of principles; the reach for the ideals of a civilization–
not for the lapses of adherence to them.

“After School” 1959 Norman Rockwell

Flag Day in the United States, observed on June 14th, commemorates the adoption of the American flag by the Second Continental Congress in 1777. It’s a day to honor the symbol of the nation’s unity, freedom, and democracy. The flag represents the ideals and principles upon which the country was founded, including liberty, justice, and equality.

On Flag Day, Americans typically display the flag at their homes and businesses, participate in patriotic ceremonies, and reflect on the significance of the flag in American history and culture. It’s also a time to remember the sacrifices made by those who have served and continue to serve in defense of the nation. Flag Day serves as a reminder of the values that bind Americans together as one nation, under the banner of the stars and stripes.

United States Independence Day

There are no rigorous standard heights for flagpoles displaying the American flag in educational settlements but there are general guidelines and recommendations.

Commercial Use: In commercial settings, flagpoles can vary widely depending on the size of the building and the surrounding landscape. They can range from 20 feet for smaller businesses to over 100 feet for large corporate buildings.

Government Buildings: Flagpoles at government buildings or public spaces often range from 30 to 60 feet or more, depending on the size and prominence of the building.

Proportions: A general guideline for the American flag is that the length of the flag should be about one-quarter to one-third the height of the flagpole.

Regulations: Some local ordinances or homeowner associations may have specific guidelines regarding flagpole height, so it’s a good idea to check local regulations before installing one.

Ultimately, the height of a flagpole for the American flag depends on the context and purpose of display, as well as practical considerations such as the size of the flag itself and local regulations.

Flagpoles

University of Michigan

Hillsdale College Michigan

Western University Ontario

Universitetet i Oslo

Northeastern University Massachusetts

University at Buffalo New York

Università Ca’ Foscari Venezia

Pepperdine University / California

Colby College Maine

Finley Public School New South Wales Australia

St. Olaf College Minnesota

College of the Ozarks Missouri

University of Alaska Fairbanks

 

Neuqua Valley High School Illinois

Hillsdale College Michigan

Abilene Christian University Texas

University of Southern Mississippi | Image: Courtland Wells

Québec

Queensborough Community College

Bucknell University Pennsylvania

Flagpoles

 

NB: “The flag stands for a set of principles, not the lack of adherence to them.” ― Craig D. Lounsbrough.  We are not sure about this source; nor the author.  We have adapted the sentiment for our home page excerpt.

Flagpoles

Voting Precincts

Today we refresh our understanding of the standard of care for hosting elections in public spaces such as schools, colleges and universities.

In the United States, polling places can be located in a variety of public and private facilities, not just in public schools. While public schools are commonly used as polling places due to their widespread distribution and accessibility, they are not necessarily the largest proportion of polling places nationwide. The specific locations of polling places can vary by jurisdiction and are determined by local election officials. Other common polling place locations include community centers, churches, libraries, government buildings, and private residences.

The selection of polling places is based on factors like accessibility, convenience, and the need to accommodate a specific number of voters within a given precinct or district. The goal is to ensure that voters have reasonable access to cast their ballots on election day. The use of public schools as polling places is widespread but not universal, and the distribution of polling places across various types of facilities can vary from one region to another.

2024 International Building Code Appendix E: Supplementary Accessibility Requirements

NFPA 730 Guide to Premises Security: 2026 First Draft Report | Consultation closes January 3, 2025

“Election Day” 1944″ Norman Rockwell

The political party that claims that “democracy is at stake” today’s election is the same political party that seeks to federalize state election laws, pack the Supreme Court, remove the Electoral College, remove US national borders and abolish voter identification will be voting in today’s off-year elections.   In other words: it wants to abolish democracy.  Its partisans have long since metastasized in education communities where polling places for students, faculty, staff and nearby residents are hosted.

Join us in post-irony America today when we focus only on the safety and environmental condition of these polling places.   Where there is closer agreement.  Catalogs, titles, chapters, sections and passages that inform best practice on this topic:

Can Voters Detect Malicious Manipulation of Ballot Marking Devices?

 

International Code Council

International Building Code

A117 Accessible and Useable Buildings and Facilities

National Fire Protection Association

Life Safety Code

Premises Security

ASHRAE International

Thermal Environmental Conditions for Human Occupancy

Illumination Engineering Society

Designing Lighting for People and Buildings

Security 100

Sacramento County: Polling Place and Vote Center Management

 

Can Voters Detect Malicious Manipulation of Ballot Marking Devices?

 

Can Voters Detect Malicious Manipulation of Ballot Marking Devices?

Matthew Bernhard, et. al

University of Michigan

 

Abstract:  Ballot marking devices (BMDs) allow voters to select candidates on a computer kiosk, which prints a paper ballot that the voter can review before inserting it into a scanner to be tabulated. Unlike paperless voting machines, BMDs provide voters an opportunity to verify an auditable physical record of their choices, and a growing number of U.S. jurisdictions are adopting them for all voters. However, the security of BMDs depends on how reliably voters notice and correct any adversarially induced errors on their printed ballots. In order to measure voters’ error detection abilities, we conducted a large study (N = 241) in a realistic polling place setting using real voting machines that we modified to introduce an error into each printout. Without intervention, only 40% of participants reviewed their printed ballots at all, and only 6.6% told a poll worker something was wrong. We also find that carefully designed interventions can improve verification performance. Verbally instructing voters to review the printouts and providing a written slate of candidates for whom to vote both significantly increased review and reporting rates-although the improvements may not be large enough to provide strong security in close elections, especially when BMDs are used by all voters. Based on these findings, we make several evidence-based recommendations to help better defend BMD-based elections.

 

IEEE provides this article for public use without charge.

Solidity

Solidity is a high-level, statically-typed programming language used for developing smart contracts on the Ethereum blockchain. Smart contracts are self-executing contracts with the terms of the agreement between buyer and seller written directly into lines of code. Solidity was specifically designed for the Ethereum platform, and it is the most widely used language for creating Ethereum-based smart contracts.

The code below shows how delegated voting can be done so that vote counting is automatic and completely transparent at the same time.

Photograph by Carol M. Highsmith. Library of Congress,

pragma solidity ^0.7.0;

/// @title Voting with delegation.
contract Ballot {
    // This declares a new complex type which will
    // be used for variables later.
    // It will represent a single voter.
    struct Voter {
        uint weight; // weight is accumulated by delegation
        bool voted;  // if true, that person already voted
        address delegate; // person delegated to
        uint vote;   // index of the voted proposal
    }

    // This is a type for a single proposal.
    struct Proposal {
        bytes32 name;   // short name (up to 32 bytes)
        uint voteCount; // number of accumulated votes
    }

    address public chairperson;

    // This declares a state variable that
    // stores a `Voter` struct for each possible address.
    mapping(address => Voter) public voters;

    // A dynamically-sized array of `Proposal` structs.
    Proposal[] public proposals;

    /// Create a new ballot to choose one of `proposalNames`.
    constructor(bytes32[] memory proposalNames) {
        chairperson = msg.sender;
        voters[chairperson].weight = 1;

        // For each of the provided proposal names,
        // create a new proposal object and add it
        // to the end of the array.
        for (uint i = 0; i < proposalNames.length; i++) {
            // `Proposal({...})` creates a temporary
            // Proposal object and `proposals.push(...)`
            // appends it to the end of `proposals`.
            proposals.push(Proposal({
                name: proposalNames[i],
                voteCount: 0
            }));
        }
    }

    // Give `voter` the right to vote on this ballot.
    // May only be called by `chairperson`.
    function giveRightToVote(address voter) public {
        // If the first argument of `require` evaluates
        // to `false`, execution terminates and all
        // changes to the state and to Ether balances
        // are reverted.
        // This used to consume all gas in old EVM versions, but
        // not anymore.
        // It is often a good idea to use `require` to check if
        // functions are called correctly.
        // As a second argument, you can also provide an
        // explanation about what went wrong.
        require(
            msg.sender == chairperson,
            "Only chairperson can give right to vote."
        );
        require(
            !voters[voter].voted,
            "The voter already voted."
        );
        require(voters[voter].weight == 0);
        voters[voter].weight = 1;
    }

    /// Delegate your vote to the voter `to`.
    function delegate(address to) public {
        // assigns reference
        Voter storage sender = voters[msg.sender];
        require(!sender.voted, "You already voted.");

        require(to != msg.sender, "Self-delegation is disallowed.");

        // Forward the delegation as long as
        // `to` also delegated.
        // In general, such loops are very dangerous,
        // because if they run too long, they might
        // need more gas than is available in a block.
        // In this case, the delegation will not be executed,
        // but in other situations, such loops might
        // cause a contract to get "stuck" completely.
        while (voters[to].delegate != address(0)) {
            to = voters[to].delegate;

            // We found a loop in the delegation, not allowed.
            require(to != msg.sender, "Found loop in delegation.");
        }

        // Since `sender` is a reference, this
        // modifies `voters[msg.sender].voted`
        sender.voted = true;
        sender.delegate = to;
        Voter storage delegate_ = voters[to];
        if (delegate_.voted) {
            // If the delegate already voted,
            // directly add to the number of votes
            proposals[delegate_.vote].voteCount += sender.weight;
        } else {
            // If the delegate did not vote yet,
            // add to her weight.
            delegate_.weight += sender.weight;
        }
    }

    /// Give your vote (including votes delegated to you)
    /// to proposal `proposals[proposal].name`.
    function vote(uint proposal) public {
        Voter storage sender = voters[msg.sender];
        require(sender.weight != 0, "Has no right to vote");
        require(!sender.voted, "Already voted.");
        sender.voted = true;
        sender.vote = proposal;

        // If `proposal` is out of the range of the array,
        // this will throw automatically and revert all
        // changes.
        proposals[proposal].voteCount += sender.weight;
    }

    /// @dev Computes the winning proposal taking all
    /// previous votes into account.
    function winningProposal() public view
            returns (uint winningProposal_)
    {
        uint winningVoteCount = 0;
        for (uint p = 0; p < proposals.length; p++) {
            if (proposals[p].voteCount > winningVoteCount) {
                winningVoteCount = proposals[p].voteCount;
                winningProposal_ = p;
            }
        }
    }

    // Calls winningProposal() function to get the index
    // of the winner contained in the proposals array and then
    // returns the name of the winner
    function winnerName() public view
            returns (bytes32 winnerName_)
    {
        winnerName_ = proposals[winningProposal()].name;
    }
}

Mortuary Arts

“Marat Assassinated” | Jacques-Louis David 1793

There are several ANSI accredited standards that apply to mortuary science, particularly in the areas of forensic science and medicolegal death investigation. These standards are developed to ensure the highest levels of professionalism, quality, and consistency in the field. Here are some key standards:

  1. ANSI/ASB Best Practice Recommendations: The American National Standards Institute in collaboration with the American Academy of Forensic Sciences has developed various standards, including those related to the handling and processing of human remains. For example, the ANSI/ASB Best Practice Recommendation 094-2021 outlines procedures for postmortem friction ridge print recovery, emphasizing systematic approaches and legal compliance during the process​
    ANSI/ASB Standard 125-2021: This standard focuses on the general requirements for medicolegal death investigation systems. It covers infrastructure, personnel training, and competency requirements to ensure high-quality death investigations. It also references other professional guidelines and accreditation checklists from organizations such as the National Association of Medical Examiners and the International Association of Coroners and Medical Examiners

These standards are integral to maintaining rigorous protocols and ethical practices within mortuary science and related fields. They help ensure that procedures are consistent, legally compliant, and respectful of the deceased, ultimately contributing to the reliability and credibility of forensic investigations. For more detailed information, you can refer to the ANSI and ASB standards documentation available through their respective organizations.

Anatomical Donation

Virtual Gross Anatomy Lab

Standard for Interactions Between Medical Examiner, Coroner and Death Investigation Agencies

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content