Author Archives: mike@standardsmichigan.com

Loading
loading...

Solar Panels on King’s College Chapel Roof

“…The solar panels will populate the gothic chapel roof, producing an approximate 105,000 kWh of energy a year – enough to run the chapel’s electricity, and saving around £20,000 in energy bills per year. The college confirmed that any excess energy would be sold off to the national grid.

King’s College Announcement

Solar Panels on King’s College Chapel Roof

Solar panels perform better when listening to music:

A 2013 study by researchers at Imperial College London and Queen Mary University of London showed that solar panels actually work better when exposed to music, of multiple genres. Scientists at the university proved that when exposed to high pitched sounds, like those found in rock and pop music, the solar cells’ power output increased by up to 40 percent. Classical music was also found to increase the solar cells’ energy production, but slightly less so than rock and pop, as it generally plays at a lower pitch than pop and rock. Whether they know it or not, British band Coldplay are just one of the artists benefitting from this research. During their 2021 tour, they installed solar photovoltaic panels in the build-up to each show, “behind the stage, around the stadium and where possible in the outer concourses”…

BS 7671 Requirements for Electrical Installations

The Major Differences in Electrical Standards Between the U.S. and Europe

Representative Calculation: (WAG)

To determine how much electrical power and lighting 12 kilowatts (kW) will provide for an educational facility, we need to consider the following factors:

    1. Power Distribution: How the 12 kW will be distributed across different electrical needs such as lighting, computers, HVAC (heating, ventilation, and air conditioning), and other equipment.
    2. Lighting Requirements: The specific lighting requirements per square foot or room, which can vary based on the type of facility (classrooms, libraries, laboratories, etc.).
    3. Efficiency of Lighting: The type of lighting used (e.g., LED, fluorescent, incandescent) as this affects the power consumption and lighting output.

We start with lighting.

    1. Lighting Efficiency:
      • LED lights are highly efficient, typically around 100 lumens per watt.
      • Fluorescent lights are less efficient, around 60-70 lumens per watt.
    2. Lighting Power Calculation:
      • 12 kW (12,000 watts) of LED lighting at 100 lumens per watt would provide: 12,000 watts×100 lumens/watt=1,200,000 lumens
    3. Illumination Requirements:
      • Classroom: Approximately 300-500 lux (lumens per square meter).
      • Library or laboratory: Approximately 500-750 lux.
    4. Area Coverage:
      • If we target 500 lux (which is 500 lumens per square meter), we can calculate the area covered by the lighting: (1,200,000 lumens)/ 500 lux=2,400 square meters

Now we need to allocate power to other loads.

    1. Lighting: Assuming 50% of the 12 kW goes to lighting:
      • Lighting Power: 6 kW (6,000 watts)
      • Using the previous calculation: 6,000 watts×100 lumens/watt=600,000 lumens
      • Area Coverage for lighting (at 500 lux): (600,000 lumens)/500 lux=1,200 square meters
    2. Other Electrical Needs:
      • Computers and equipment: Typically, a computer lab might use around 100 watts per computer.
      • HVAC: This can vary widely, but let’s assume 4 kW is allocated for HVAC and other systems.

Breakdown:

    • Lighting: 6 kW
    • Computers/Equipment: 2 kW (e.g., 20 computers at 100 watts each)
    • HVAC and other systems: 4 kW

Summary

    • Lighting: 12 kW can provide efficient LED lighting for approximately 1,200 square meters at 500 lux.
    • General Use: When distributed, 12 kW can cover lighting, a computer lab with 20 computers, and basic HVAC needs for a small to medium-sized educational facility.

The exact capacity will vary based on specific facility needs and equipment efficiency.

 

 

Solar Photovoltaic Energy Systems

Technical Committee 82 of the International Electrotechnical Commission is charged with preparing international standards for the full length of the solar energy power chain  The span of the power chain includes the light input, the cell itself, and the fittings and accessories to the end use (utilization) equipment.

Strategic Business Plan of IEC Technical Committee 82

The United States is the Global Secretariat for TC 82 through the US National Committee of the International Electrotechnical Commission (USNA/IEC) administered by the American National Standards Institute(ANSI).  Standards Michigan is a long-standing member of ANSI since our “standards journey” began at the University of Michigan in 1993.

The USNA/IEC and participates in its standards development processes; typically collaborating with global research and application engineers in the IEEE Industrial Applications Society and the IEEE Power and Energy Society.   To advance its agenda for lower #TotalCostofOwnership for US real asset executives and facility managers Standards Michigan also collaborates closely with subject matter experts who contribute to, and draw from, the knowledge base in the IEEE Education and Healthcare Facilities Committee (E&H).

The IEC permits public commenting on its draft standards; though you will need to establish login credentials:

IEC Public Commenting

Your comments will be reviewed by the IEC National Committee of the country you live in, which can decide to propose them as national input for the final draft of the IEC International Standard.  This approach makes it easier for individual nations to participate in IEC standards development processes because the resources that national standards bodies need to administer participation resides in Geneva and is managed there.  

“The Eclipse of the Sun in Venice, July 6, 1842” | Ippolito Caffi

We collaborate with the IEEE Education & Healthcare Facilities Committee which has its own platform to tracking commenting opportunities:

IEEE E&H/USNC/IEC Workspace

As of this posting, no interoperability redlines have been released for public consultation.   In large measure, IEC titles contribute to a level playing field among multi-national electrical equipment manufacturers so we should not be surprised that there are no redlines to review.   When they are released we place them on the agenda of the IEEE E&H Committee which meets 4 times monthly in European and American time zones.

Log in to the E&H Committee meeting

Issue: [18-240]

Category: Electrical Power, Energy Conservation

Contact: Mike Anthony, Jim Harvey, Peter Sutherland


LEARN MORE:

[1] US Commenters must route their comments through the USNA/IEC.

[2] Many product and installation standards are developed by the Association of Electrical Equipment and Medical Imaging Manufacturers (NEMA): CLICK HERE

[3]  NEMA comparison of NEC and IEC electrical safety standards

Dutch Institute for Fundamental Energy Research

 

 

Solarvoltaic PV Systems

“Icarus” Joos de Momper

National Electrical Code Articles 690 and 691 provide electrical installation requirements for Owner solarvoltaic PV systems that fall under local electrical safety regulations.  Access to the 2023 Edition is linked below;

2023 National Electrical Code

2026 National Electrical Code Second Draft Transcript | CMP-4

Insight into the technical problems managed in the 2023 edition can be seen in the developmental transcripts linked below:

Panel 4  Public Input Report (869 pages)

Panel 4  Second Draft Comment Report (199 pages)

The IEEE Joint IAS/PES (Industrial Applications Society & Power and Energy Society) has one vote on this 21-member committee; the only pure “User-Interest” we describe in our ABOUT.  All other voting representatives on this committee represent market incumbents or are proxies for market incumbents; also described in our ABOUT.

The 2026 National Electrical Code has entered its revision cycle.  Public input is due September 7th.

We maintain these articles, and all other articles related to “renewable” energy, on the standing agenda of our Power and Solar colloquia which anyone may join with the login credentials at the upper right of our home page.   We work close coupled with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones; also open to everyone.

 

 

 

 

Hegemon Cuyahoga & County Dublin

Financial Presentations & Webcasts

Here we shift our perspective 120 degrees to understand the point of view of the Producer interest in the American national standards system (See ANSI Essential Requirements).  The title of this post draws from the location of US and European headquarters.  We list proposals by a successful electrical manufacturer for discussion during today’s colloquium:

2026 National Electrical Code

CMP-1: short circuit current ratings, connections with copper cladded aluminum conductors, maintenance to be provided by OEM, field markings

CMP-2: reconditioned equipment, receptacles in accessory buildings, GFCI & AFCI protection, outlet placement generally, outlets for outdoor HVAC equipment(1)

(1) Here we would argue that if a pad mount HVAC unit needs service with tools that need AC power once every 5-10 years then the dedicated branch circuit is not needed.  Many campuses have on-site, full-time staff that can service outdoor pad mounted HVAC equipment without needing a nearby outlet.  One crew — two electricians — will run about $2500 per day to do anything on campus.

CMP-3: No proposals

CMP-4: solar voltaic systems (1)

(1) Seems reasonable – spillover outdoor night time lighting effect upon solar panel charging should be identified.

CMP-5: Administrative changes only

CMP-6: No proposals

CMP-7: Distinction between “repair” and “servicing”

CMP-8: Reconditioned equipment

CMP-9: Reconditioned equipment

CMP-10: Short circuit ratings, service disconnect, disconnect for meters, transformer secondary conductor, secondary conductor taps, surge protective devices, disconnecting means generally, spliced and tap conductors, more metering safety, 1200 ampere threshold for arc reduction technology, reconditioned surge equipment shall not be permitted, switchboard short circuit ratings

CMP-11: Lorem

CMP-12: Lorem

CMP-13: Lorem

Lorem ipsum

How the Netherlands Prevents Flood Disasters

 

 

Federal Flood Risk Management Standard

Americas Infrastructure Report Card

ASCE Standards Catalog | Standards Open for Public Comment

Flood Abatement Equipment

Vereenigde Oostindische Compagnie | Dutch East India Company

FM Global is one of several organizations that produce technical and business documents that set the standard of care for risk management in education facilities.   These standards — Property Loss Prevention Data Sheets —  contribute to the reduction in the risk of property loss due to fire, weather conditions, and failure of electrical or mechanical equipment.  They incorporate nearly 200 years of property loss experience, research and engineering results, as well as input from consensus standards committees, equipment manufacturers and others.

In July FM Global updated its standard FM 2510 Flood Abatement Equipment which should interest flood barrier manufacturers, standard authorities, industrial and commercial facilities looking to protect their buildings from riverline flooding conditions.

The following updates were proposed and mostly adopted:

  • Modifications to the opening barrier protocol to include water performance testing at lower depths;
  • Additional tests that apply to open-cellular rubber compounds (i.e., foam-type rubber) which are commonly used as gaskets on flood barriers need to be added to the Standard to sufficiently assess their quality;
  • Addition of adhesive testing. Many barrier designs use adhesives to bond the gasket material to the barrier. Adhesives are not addressed under the current protocol;
    Modify the flood abatement pump section to clarify approval of pump packages vs. wet-end only;
  • Additional requirements for electric drive and submersible flood pumps;
  • Modifications to backwater valve section to be inclusive of all types of “backwater valves” besides the traditional check valve.
  • Additional requirements for waterproofing products for building penetrations. Products in this category include collars, plugs, elastomeric seals, and types of putty.

This standard also contains test requirements for the performance of flood barriers, flood mitigation pumps, backwater valves, and waterproofing products for building penetrations, as well as an evaluation of the components comprising these products to assure reliability in the barrier’s performance.

While there are a number of noteworthy colleges and universities that have grown near rivers and lakes — twenty-five of which are listed HERE — severe weather and system failures present flooding risks to them all.

Another Data Sheet — I-40 Floods — was updated in October.   Both Data Sheets are available for download at the link below:

FM GLOBAL PROPERTY LOSS PREVENTION DATA SHEETS

You will need to set up (free) access credentials.

You may contact FM Global directly: Josephine Mahnken, (781) 255-4813, josephine.mahnken@fmapprovals.com, 1151 Boston-Providence Turnpike, Norwood, MA 02062

Our “door” is open every day at 11 AM Eastern time to discuss any consensus document that sets the standard of care for the emergent #SmartCampus.  Additionally, we dedicate one session per month to Management and Water standards.  See our CALENDAR for the next online teleconference.   Use the login credentials at the upper right of our home page.

Issue: [Various]

Category: Risk Management, Facility Asset Management

Colleagues: Mike Anthony, Jack Janveja, Richard Robben

Property Loss Prevention

 

Graduation, Dating, Engagements, Weddings, Births & Obituaries

Weddings

 

 

Nine years later and first day as husband and wife they got to finally sneak a kiss in one of the first places they ever passed notes

Hun School Of Princeton

“…I have spread my dreams under your feet; Tread softly because you tread on my dreams.” –W.B. Yeats | ‘He Wishes for the Cloths of Heaven’

“Nature’s Masterpiece”

Several colleges and universities have “kissing benches” or similar traditions tied to romance on campus.

Michigan State University Beaumont Tower: Nick and Myra Kanillopoulos

Syracuse University. Kissing Bench: This bench on the Quad is steeped in tradition. Legend has it that if a couple kisses on the bench, they will eventually marry. Conversely, if a single person sits there alone, they risk staying single forever.

University of Idaho.  Hello Walk and Kissing Rock: While not a bench, this area on campus features a large rock where students have historically kissed. It’s a romantic tradition for couples at the university.

Florida State University Kissing Bench

University of North Carolina at Chapel Hill

Clemson University Lover’s Lane

Illinois State University

University of Cambridge: St. John’s College Bridge of Sighs

University of Oxford: The Bridge of Sighs

University of Bath Somerset County: Sham Castle

Weddings

Rhubarb Strawberry Pie

Recipe

A dessert  popular in the United Kingdom, where rhubarb has been cultivated since the 1600s, and the leaf stalks eaten since the 1700s. Besides diced rhubarb, it almost always contains a large amount of sugar to balance the intense tartness of the plant. The pie is usually prepared with a bottom pie crust and a variety of styles of upper crust.

In the United States, often a lattice-style upper crust is used.  This pie is a traditional dessert in the United States. It is part of New England cuisine.  Rhubarb has long been a popular choice for pies in the Great Plains region and the Michigan Great Lakes Region, where fruits were not always readily available in the spring

Related

University of Missouri: Plant rhubarb, the pie plant, in March

University of Nebraska: Rhubarb Cream Pie

TU Dublin: Rhubarb Pie Using Sweet Shortbread Pastry

Strawberries

Kitchens 200

Food Safety

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content