Author Archives: mike@standardsmichigan.com

Loading
loading...

Paint

Painting the Eiffel Tower

In any industry painting (and decorating) operations play a crucial role in facility management by enhancing the overall appearance, protecting surfaces, and maintaining a healthy and conducive environment.  In the education industry we find these operations in both the business and academic units; often co-mingled with sign-making shops.   

  • Aesthetics and Branding: Fresh coats of paint revitalize the appearance of walls, ceilings, doors, and other surfaces, creating a clean and inviting environment. Painting can also be used strategically to incorporate branding elements, such as company colors or logos, to reinforce brand identity throughout campus.  Bright, vibrant colors can stimulate creativity and engagement, while well-chosen color schemes can create a sense of calm and focus.
  • Surface Protection: Color coatings are a protective barrier for surfaces, shielding them from environmental factors like moisture, sunlight, dust, and regular wear and tear. It helps prevent structural damage, corrosion, and deterioration, extending the lifespan of various components in the facility, including walls, floors, metal structures, and equipment.
  • Maintenance and Preservation: Regular painting operations are part of preventive maintenance programs in facility management. By addressing minor issues like peeling, cracks, or stains on surfaces, painting helps maintain a well-maintained and professional appearance. It prevents further damage and the need for costlier repairs in the future.  Using environmentally conscious paints contributes to sustainable practices and healthier indoor air quality.
  • Functional Differentiation: Painted color variations are utilized to differentiate various spaces within a facility. By using different colors, patterns, or textures, specific areas can be designated for different purposes, such as work zones, storage areas, or recreational spaces. This assists with wayfinding and enhances overall functionality.

Today at 15:00 UTC we review best practice literature for large-scale painting operations — an exploration different than the one undertaken during our Fine Art and Signs, Signs, Signs colloquia — with attention to worker and chemical safety.  Among these considerations:

  • Falls from Heights: When painting large structures such as buildings or bridges, workers often need to work at elevated heights using ladders, scaffolding, or aerial lifts. Falls from heights are a significant hazard, and proper fall protection systems, such as guardrails, harnesses, and safety nets, should be in place to prevent accidents.  Large-scale painting operations may require workers to access or work on structures that have structural weaknesses, corroded surfaces, or unstable platforms. 
  • Inhalation of Hazardous Substances: Paints, coatings, solvents, and other chemicals used in large-scale painting operations can release volatile organic compounds (VOCs) and other harmful substances. Prolonged exposure to these chemicals, particularly in poorly ventilated areas, can lead to respiratory problems, dizziness, skin irritation, or other health issues. Proper personal protective equipment (PPE) like respirators, gloves, and protective clothing should be provided and used to minimize exposure risks.
  • Skin and Eye Irritation: Contact with paint, solvents, or other chemicals can cause skin irritation, dermatitis, or allergic reactions. Splashes or spills can also result in eye injuries. Workers should wear appropriate protective clothing, such as gloves, coveralls, and safety goggles, to protect their skin and eyes from direct contact with hazardous substances.
  • Fire and Explosion Risks: Some paints and solvents are flammable or combustible, posing fire and explosion risks, especially in enclosed spaces or areas with inadequate ventilation. Strict adherence to fire safety measures, including proper storage and handling of flammable materials, use of spark-proof tools, and implementing effective fire prevention protocols, is crucial.
  • Weather Conditions: Outdoor large-scale painting operations are often subject to weather conditions, such as extreme temperatures, high winds, or rain. Adverse weather conditions can pose risks to workers’ safety and affect the quality of paint application. Adequate weather monitoring and planning, along with appropriate safety measures and protective equipment, are necessary to mitigate these hazards.

Open to everyone.  Use the login credentials at the upper right of our home page.

Relevant standards:

Chemistry

ASTM D-series titles

EN 1504-2: Products and systems that are graffiti-resistant

ISO 12944: Paints and varnishes

Application and Fire Safety

Institute of Electrical and Electronic Engineers: Self-Operating Paint Bot

National Fire Protection Association

Occupational Safety and Health Administration

Color Metrology

Color and Appearance

Range of colors chart used in NIST measurements

The National Institute of Standards and Technology measures color through a combination of sophisticated instrumentation and established standards:

1. Standards and Calibration

    • Primary Standards: NIST maintains primary color standards, such as spectral reflectance and transmittance standards, that are traceable to international measurement systems.
    • Calibration of Instruments: Instruments used for color measurement are calibrated using these standards to ensure accuracy and consistency.

2. Instrumentation

    • Spectrophotometers: These instruments measure the intensity of light at different wavelengths. They are used to obtain the spectral reflectance or transmittance of a sample.
    • Colorimeters: These are simpler instruments that measure color using a few broad wavelength bands. They are often used for less precise applications.

3. Measurement Process

    • Sample Preparation: The sample to be measured is prepared according to specific protocols to ensure uniformity and consistency.
    • Spectral Measurement: The spectrophotometer or colorimeter measures the light reflected or transmitted by the sample across the visible spectrum.
    • Data Collection: The data collected includes the spectral power distribution, which indicates how much light is reflected or transmitted at each wavelength.

4. Data Analysis

    • Color Spaces and Models: The raw spectral data is converted into color space coordinates (e.g., CIE XYZ, Lab) using mathematical models. These models account for human vision characteristics and provide a numerical representation of color.
    • Comparison and Reporting: The measured color can be compared to standard references or reported in various formats depending on the application (e.g., color difference ΔE).

5. Quality Control and Assurance

    • Repeatability and Reproducibility: NIST ensures the repeatability and reproducibility of color measurements by using rigorous quality control protocols.
    • Uncertainty Analysis: The uncertainty associated with the measurements is analyzed and reported to provide a clear understanding of the precision of the measurements.

Example Instruments and Techniques

    • Goniospectrophotometers: These measure the color of materials that change appearance with viewing angle.
    • Integrating Spheres: These are used with spectrophotometers to measure diffuse reflectance or transmittance.
    • Laser-based Systems: Advanced systems that use lasers for highly precise color measurements.

NIST’s methods are designed to provide highly accurate and reliable color measurements that can be used across a wide range of industries, including manufacturing, textiles, and digital imaging.

Standards Michigan: National Institute of Standards and Technology

 

Color Calculation Standard E3415

New Standard Will Aid in Color Calculation of Objects

ASTM Committee E12 on Color and Appearance


According to ASTM member Hugh Fairman, legacy standard E308 gathered data and pre-calculated weight sets for doing what is called “tristimulus integration,” which determines the actual color of a measured spectral reflectance or spectral power curve. While this standard is still useful in certain cases, a need has grown for the more updated practice described in E3415 to respond to interest in how illumination is perceived on painted surfaces.

Standards Michigan: ASTM International

Related:

A RAL number is part of a standardized color matching system developed by the RAL Deutsches Institut für Gütesicherung und Kennzeichnung (German Institute for Quality Assurance and Certification) used primarily in Europe. It is widely used for defining colors for paint, coatings, and plastics.

Barbering & Cosmetology Academies

‘The Barber of Seville’ by Luis Alvarez Catalá

Codes, standards and licensing for barbering schools and cosmetology academies are governed by local regulations; or local adaptations of national standards-setting organizations.  

Northern Michigan University | Marquette County

Building Codes

  1. Minimum Floor Space
    • Schools must provide adequate space for instruction and practice. For example, California requires a minimum of 3,000 square feet for cosmetology schools (which often include barbering), with at least 2,000 square feet dedicated to working, practice, and classroom areas. Additional space (e.g., 30 square feet per student beyond the first 50) may be required as enrollment increases.
    • Rooms for practical work must be sized appropriately, such as at least 14 feet wide for one row of barber chairs or 20 feet for two rows (California standard).
  2. Ceiling Height
    • Practice and classroom areas often require a minimum ceiling height, such as 9 feet, to ensure proper ventilation and comfort (e.g., California Building Code).
  3. Floor Finish
    • Floors in areas like restrooms or workspaces must be made of nonabsorbent materials (e.g., tile) to facilitate cleaning and maintain hygiene.
  4. Separation from Other Uses
    • Barbering schools must be distinct entities, not combined with residential spaces or unrelated businesses (e.g., Nevada’s NAC 643.500).
  5. Compliance with Local Building and Zoning Codes
    • Facilities must adhere to local ordinances for construction, occupancy, and zoning, ensuring the building is structurally sound and legally permitted for educational use (e.g., Virginia’s 18VAC41-20-270).
  6. Accessibility
    • Buildings must comply with accessibility standards (e.g., ADA in the U.S.), providing ramps, wide doorways, and accessible restrooms.

Occupational Safety and Health Administration: Bloodborne Pathogen Safety Standards


Safety

  1. Fire Safety
    • Compliance with the State Uniform Fire Prevention and Building Code (e.g., New York’s 19 NYCRR Parts 600-1250) or equivalent, including fire exits, extinguishers, and alarms.
    • Emergency exits must be clearly marked and unobstructed.
  2. Electrical Safety
    • All electrical equipment (e.g., clippers, dryers) must be regularly inspected (e.g., PAT testing in some regions) to prevent shocks or fires.
  3. Ventilation and Temperature Control
    • Adequate ventilation systems are required to maintain air quality and a safe working temperature, protecting students and instructors from fumes or overheating.
  4. First Aid and Emergency Preparedness
    • A stocked first aid kit must be available, and schools should have protocols for handling accidents or emergencies.
  5. Equipment Safety
    • Tools and workstations (e.g., chairs, sinks) must be maintained in good condition to prevent injuries. Hazardous tools like razor-edged implements for callus removal are often prohibited (e.g., California regulations).
  6. Occupational Safety
    • Compliance with OSHA (Occupational Safety and Health Administration) or state equivalents, such as Virginia’s Department of Labor and Industry standards, to protect against workplace hazards like chemical exposure or repetitive strain.


Hygiene

  1. Sanitation of Facilities
    • Schools must be kept clean and sanitary at all times, including floors, walls, furniture, and workstations (e.g., Virginia’s 18VAC41-20-270).
  2. Disinfection of Tools
    • Each student or instructor must have a wet disinfection unit at their station for sterilizing reusable tools (e.g., combs, shears) after each use. Disinfectants must be EPA-registered and bactericidal, virucidal, and fungicidal.
    • Single-use items (e.g., razor blades) must be discarded after each client in a labeled sharps container.
  3. Hand Hygiene
    • Practitioners must wash hands with soap and water or use hand sanitizer before services (e.g., Texas Rule 83.102).
  4. Client Protection
    • Sanitary neck strips or towels must be used to prevent capes from contacting clients’ skin directly (e.g., California regulations).
    • Services cannot be performed on inflamed, broken, or infected skin, and practitioners with such conditions on their hands must wear gloves.
  5. Product Safety
    • Cosmetic products containing FDA-banned hazardous substances are prohibited, and all products must be used per manufacturer instructions (e.g., Virginia’s 18VAC41-20-270).
  6. Waste Management
    • Proper disposal of soiled items (e.g., hair clippings) and hazardous waste (e.g., blades) is required, often daily or after each client.
  7. Health Department Compliance
    • Schools must follow state health department guidelines and report inspection results (e.g., Virginia requires reporting to the Board of Barbers and Cosmetology).
  8. Self-Inspection
    • Annual self-inspections must be documented and retained for review (e.g., Virginia mandates keeping records for five years).


Discussion

  • State-Specific Variations: Always consult your state’s barbering or cosmetology board for exact requirements. For instance, Texas (TDLR) emphasizes signage and licensing display, while California focuses on detailed sterilization methods.
  • Inspections: Schools are subject to regular inspections by state boards or health departments to ensure compliance.

Cosmetology (as time allows)

 

A Gentleman’s London

8990 Grand River Ave, Detroit

Homepage

10 Tampa Bay

Lakeland Florida high school offers free clothes and laundry facilities. Expansion of this concept to Saturdays for all students in the district would contribute to greater utilization of square footage that is normally unused. It may also lower energy cost and contribute to “family feeling” in the district.

Standards Florida

Schools install laundry facilities to help students in need, improve attendance

First Day of School

Donegan Acoustics

Today we take a cross cutting review of all the literature (codes, standards, guidelines, laws)  that informs safe and sustainability occupancy load, means of egress, illumination, ambient air, plumbing, electric, communication and acoustics in classrooms.

1. Building Codes

  • International Building Code (IBC): Adopted by most states, it provides guidelines for the design and construction of buildings, including schools.
  • International Existing Building Code (IEBC): Provides standards for the renovation and repair of existing school buildings.
  • State and Local Building Codes: Many states and municipalities have additional or modified codes that must be followed.

2. Fire and Life Safety Codes

  • National Fire Protection Association (NFPA) Codes:
    • NFPA 101: Life Safety Code – Sets requirements for egress, fire protection, and emergency planning.
    • NFPA 13: Installation of Sprinkler Systems – Specifies standards for automatic fire sprinkler systems.
    • NFPA 72: National Fire Alarm and Signaling Code – Covers fire alarm system installation and maintenance.
    • NFPA 70: National Electrical Code (NEC) – Outlines electrical wiring standards to prevent fire hazards.

3. Accessibility Standards

  • Americans with Disabilities Act (ADA):
    • ADA Standards for Accessible Design – Ensures that school facilities are accessible to individuals with disabilities.
  • Architectural Barriers Act (ABA): Requires accessibility in buildings constructed with federal funds.

4. Environmental and Health Standards

Thermal Environmental Conditions for Human Occupancy

  • Environmental Protection Agency (EPA) Regulations:
    • EPA Lead and Asbestos Regulations: Governs the handling of lead and asbestos in school buildings.
    • EPA’s Indoor Air Quality Tools for Schools: Provides guidelines to manage air quality.

5. Structural Standards

  • American Society of Civil Engineers (ASCE):
    • ASCE 7: Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
  • American Concrete Institute (ACI):
    • ACI 318: Building Code Requirements for Structural Concrete.

6. Plumbing and Mechanical Codes

  • International Plumbing Code (IPC): Provides guidelines for plumbing system design and installation.
  • International Mechanical Code (IMC): Sets standards for heating, ventilation, and air conditioning (HVAC) systems.

7. Electrical Standards

  • Institute of Electrical and Electronics Engineers (IEEE) Standards: Includes various electrical safety and installation standards relevant to school facilities.

8. Educational Specifications and Guidelines

  • Council of Educational Facility Planners International (CEFPI) Guidelines: Provides best practices for school design that promote effective learning environments.
  • State-Specific Educational Specifications: Many states have their own guidelines for the design of educational facilities to meet state-specific educational needs.

9. Safety and Security Standards

  • Crime Prevention Through Environmental Design (CPTED) Guidelines: Suggests design strategies to enhance security in school environments.
  • School Safety and Security Standards (state-specific): Some states have additional requirements for school security measures.

10. Sustainable Design Standards

  • LEED (Leadership in Energy and Environmental Design) for Schools: Provides a framework for building green and energy-efficient schools.
  • Green Building Initiative (GBI) Standards: Focuses on sustainable and energy-efficient building practices.

11. Maintenance Standards

  • International Property Maintenance Code (IPMC): Provides guidelines for the maintenance of buildings, ensuring they remain safe and functional over time.

12. Other Relevant Standards

  • Federal Emergency Management Agency (FEMA) Guidelines: Provides standards for building schools in disaster-prone areas (e.g., tornadoes, earthquakes).
  • Occupational Safety and Health Administration (OSHA) Standards: Ensures workplace safety, including in schools, covering areas like chemical safety, electrical safety, and more.

Local Considerations

  • Local Zoning Laws and Ordinances: Schools must also comply with local land use regulations, which may affect building placement, size, and use.

Classroom Acoustics


 

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content