Abstract: Indoor signage plays an essential component to find destination for blind and visually impaired people. In this paper, we propose an indoor signage and doors detection system in order to help blind and partially sighted persons accessing unfamiliar indoor environments. Our indoor signage and doors recognizer is builded based on deep learning algorithms. We developed an indoor signage detection system especially used for detecting four types of signage: exit, wc, disabled exit and confidence zone. Experiment results demonstrates the effectiveness and the high precision of the proposed recognition system. We obtained 99.8% as a recognition rate.
In educational environment, the use of new pedagogies such as collaborative learning requires an evolution from a traditional classroom model to active classroom. The students should be able to share resources to collaborate with each other through computers, tablets, or other devices. The design of smart classroom should enable the control of audiovisual equipments, projectors, interactive whiteboards, in order to facilitate interaction among teachers and students. Ubiquitous computing or pervasive computing is a concept where processors and sensors are embedded in various physical objects to form a network and communicate information. Applying the pervasive computing can facilitate the collaborative learning by creating a smart learning environment. The ubiquitous classroom should be able to support interaction of heterogeneous devices connected through wireless links to a gateway. This paper presents a model of classroom that makes several smart devices such as laptops, tablets, projectors connected through a gateway in order to encourage communication of information between learners and the smart environment. Also, the gateway manages classroom smart devices by automatic detection and connectivity and it serves as application execution platform. Finally the gateway allows the classroom to be remote managed as well as the remote integration of application.
Researchers at the University of California, Berkeley, have developed a handheld device that can extract water from the air using only the power of sunlight, even in arid conditions: https://t.co/JgXH1psevJpic.twitter.com/1A3CSrgWzX
Civilization has historically flourished around rivers and major waterways. Mesopotamia, the so-called cradle of civilization, was situated between the major rivers Tigris and Euphrates; the ancient society of the Egyptians depended entirely upon the Nile. Rome was also founded on the banks of the Italian river Tiber. Large metropolises like Rotterdam, London, Montreal, Paris, New York City, Buenos Aires, Shanghai, Tokyo, Chicago, and Hong Kong owe their success in part to their easy accessibility via water and the resultant expansion of trade. Islands with safe water ports, like Singapore, have flourished for the same reason. In places such as North Africa and the Middle East, where water is more scarce, access to clean drinking water was and is a major factor in human development.*
With this perspective, and our own “home waters” situated in the Great Lakes, we are attentive to water management standardization activity administered by International Organization Standardization Technical Committee 224 (ISO TC/224). The scope of the committee is multidimensional; as described in the business plan linked below:
Water-related management standards define a very active space; arguably, as fast-moving a space as electrotechnology. The ISO TC/224 is a fairly well accomplished committee with at least 16 consensus products emerging from a 34 nations led by Association Française de Normalisation (@AFNOR) as the global Secretariat and 34 participating nations. The American Water Works Association is ANSI’s US Technical Advisory Group administrator to the ISO.
We do not advocate the user interest in this standard at the moment but encourage educational institutions with resident expertise — either on the business side or academic side of US educational institutions — to participate in it. You are encouraged to communicate directly with Paul Olson at AWWA, 6666 W. Quincy Avenue, Denver, CO 80235, Phone: (303) 347-6178, Email: [email protected].
The work products of TC 224 (and ISO 147 and ISO TC 282) are also on the standing agendas of our Water, Global and Bucolia colloquia. See our CALENDAR for the next online meeting, open to everyone.
Abstract: Electromagnetic (EM) sources are abundant in the routine of a hospital. Such sources can be for personal use, be part of the set of electromedical equipment or the building structure. This article presents the verification of electromagnetic interference between field sources and hospital devices, since electromagnetic interference is a factor that puts the correct functioning of these equipments at risk. As a consequence, patient’s lives are also put at risk. Since in many cases, the vitality of the patient depends exclusively on medical devices, electromagnetic fields were measured inside and outside the intensive care units (ICUs) of the University Hospital Alcides Carneiro (UHAC) with all hospital devices working normally. The electromagnetic field values obtained at the hospital were compared with the values imposed by the International Electrotechnical Commission (IEC).
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T