Tag Archives: D7

Loading
loading..

print(“Python”)

Thursday, June 27, 2024: Python 3.13.0 beta 3 released

 

“Python is the programming equivalent

of a Swiss Army Knife.”

— Some guy

 

The Python Standard Library

Open source standards development is characterized by very open exchange, collaborative participation, rapid prototyping, transparency and meritocracy.   The Python programming language is a high-level, interpreted language that is widely used for general-purpose programming. Python is known for its readability, simplicity, and ease of use, making it a popular choice for beginners and experienced developers alike.  Python has a large and active community of developers, which has led to the creation of a vast ecosystem of libraries, frameworks, and tools that can be used for a wide range of applications. These include web development, scientific computing, data analysis, machine learning, and more.

Another important aspect of Python is its versatility. It can be used on a wide range of platforms, including Windows, macOS, Linux, and even mobile devices. Python is also compatible with many other programming languages and can be integrated with other tools and technologies, making it a powerful tool for software development.  Overall, the simplicity, readability, versatility, and large community support of Python make it a valuable programming language to learn for anyone interested in software development including building automation.

As open source software, anyone may suggest an improvement to Python(3.X) starting at the link below:

Python Enhancement Program

Python Download for Windows

Python can be used to control building automation systems. Building automation systems are typically used to control various systems within a building, such as heating, ventilation, air conditioning, lighting, security, and more. Python can be used to control these systems by interacting with the control systems through the building’s network or other interfaces.

There are several Python libraries available that can be used for building automation, including PyVISA, which is used to communicate with instrumentation and control systems, and PyModbus, which is used to communicate with Modbus devices commonly used in building automation systems. Python can also be used to develop custom applications and scripts to automate building systems, such as scheduling temperature setpoints, turning on and off lights, and adjusting ventilation systems based on occupancy or other variables. Overall, Python’s flexibility and versatility make it well-suited for use in building automation systems.

Subversion®

Building Automation & Control Networks

Organization of Christian Churches by Social Networks

臺科大 國立臺灣科技大學

 

Transformation and Commonality of Spatial Organization of Christian Church by Social Network Analysis

 

Yi-Chun Huang Yun-Shang Chiou

Department of Architecture, National Taiwan University of Science and Technology, Taipei, Taiwan

 

Abstract: This paper delineates the spatial characteristic of key-Christian church in Taipei metropolitan area from 1930s till 2010s. It compares and analyzes the transformation of spatial configuration corresponding to different sects and time periods. The dataset contains the spatial networks of 13 Christian churches including single and cluster building types of Presbyterian church, Chinese Baptist Convention and Taiwan Lutheran church. Applying measures in social network analysis, it attempts to understand the differences and similarities of spatial networks, especially on the churches of the same sect or same era, and to compare them with the prototype case. In other words, this paper illustrates the transformation of spatial organization of Christian churches in Taipei Taiwan during the past 80 years.

如果有來生

Fountains

“Temple, Fountain and Cave in Sezincote Park” | Thomas Daniell (1819) | Yale Center for British Art

From time to time we break from our interest in lowering the cost of our “cities-within-cities” to enjoy the work of our colleagues responsible for seasonal ambience and public art.  We have a dedicated post that celebrates the accomplishments of our gardeners and horticultural staff.   Today we dedicate a post to campus fountains–a focal point for gathering and a place for personal reflection for which there is no price.

Alas, we find a quickening of standards developing organizations growing their footprint in the spaces around buildings now.  They used to confine the scopes of their standardization enterprises to the building envelope.  That day will soon be behind us as an energized cadre of water rights social justice workers, public safety, sustainability and energy conservation professionals descend upon campus fountains with prescriptive requirements for evaporation rates, bromine concentrations, training, certification and inspections.  In other words regulators and conformity functionaries will outnumber benefactors and fountain designers 1 million to 1.

We will deal with all that when the day comes.  For the moment, let’s just enjoy them.

We are happy to walk you through the relevant structural, water safety, plumbing and electrical issues any day at 11 AM EST during our daily standing online teleconferences.   Click on any image for author attribution, photo credit or other information.

Purdue University

The Great Court at Trinity College, Cambridge

Regent University

University of Washington

Hauptgebäude der Ludwig-Maximilians-Universität München, Bayern, Deutschland

College of the Desert / Palm Desert, California

California Institute of Technology

Berry College

Utah Valley University

Universitat d’Alacant / Sant Vicent del Raspeig, Spain

Collin County Community College / Plano, Texas

University of Toledo

University of Michigan College of Engineering

Harvard University

Florida State University

University of North Texas

 

“The Church’s One Foundation”

Standards North Carolina

Dr. Rodney Wynkoop conducts the Duke Chapel Choir, the Duke Vespers Ensemble, and the Evensong Singers in the premiere (Sept. 29, 2016) of Dan Forrest’s setting of The Church’s One Foundation (AURELIA), commissioned by Duke Chapel, for the Celebration of Music honoring the re-opening of Duke Chapel. This hymn was performed at the original dedication service for Duke Chapel, so this new arrangement was commissioned for the re-opening service. Accompanied by Amalgam Brass (amalgambrass@gmail.com). Sheet music for choir, organ, optional brass and percussion, all published by Beckenhorst Press, April 2017. www.beckenhorstpress.com

Lightning Protection Systems

“Benjamin Franklin Drawing Electricity from the Sky” 1816 Benjamin West

 

Benjamin Franklin conducted his famous experiment with lightning on June 10, 1752.

He used a kite and a key to demonstrate that lightning was a form of electricity.

This experiment marked an important milestone in understanding the nature of electricity

and laid the foundation for the development of lightning rods and other lightning protection systems.

 

Seasonal extreme weather patterns in the United States, resulting in damages to education facilities and delays in outdoor athletic events — track meets; lacrosse games, swimming pool closures and the like — inspire a revisit of the relevant standards for the systems that contribute to safety from injury and physical damage to buildings: NFPA 780 Standard for the Installation of Lightning Protection Systems

FREE ACCESS

To paraphrase the NFPA 780 prospectus:

  • This document shall cover traditional lightning protection system installation requirements for the following:
       (1) Ordinary structures

       (2) Miscellaneous structures and special occupancies
       (3) Heavy-duty stacks
       (4) Structures containing flammable vapors, flammable gases, or liquids with flammable vapors
       (5) Structures housing explosive materials
       (6) Wind turbines
       (7) Watercraft
       (8) Airfield lighting circuits
       (9) Solar arrays
  • This document shall address lightning protection of the structure but not the equipment or installation requirements for electric generating, transmission, and distribution systems except as given in Chapter 9 and Chapter 12.

(Electric generating facilities whose primary purpose is to generate electric power are excluded from this standard with regard to generation, transmission, and distribution of power.  Most electrical utilities have standards covering the protection of their facilities and equipment. Installations not directly related to those areas and structures housing such installations can be protected against lightning by the provisions of this standard.)

  • This document shall not cover lightning protection system installation requirements for early streamer emission systems or charge dissipation systems.

“Down conductors” must be at least #2 AWG copper (0 AWG aluminum) for Class I materials in structures less than 75-ft in height

“Down conductors: must be at least 00 AWG copper (0000 AWG aluminum) for Class II Materials in structures greater than 75-ft in height.

Related grounding and bonding  requirements appears in Chapters 2 and Chapter 3 of NFPA 70 National Electrical Code.  This standard does not establish evacuation criteria.  

University of Michigan | Washtenaw County (Photo by Kai Petainen)

The current edition is dated 2023 and, from the transcripts, you can observe concern about solar power and early emission streamer technologies tracking through the committee decision making.  Education communities have significant activity in wide-open spaces; hence our attention to technical specifics.

2023 Public Input Report

2023 Public Comment Report

Public input on the 2026 revision is receivable until 1 June 2023.

We always encourage our colleagues to key in their own ideas into the NFPA public input facility (CLICK HERE).   We maintain NFPA 780 on our Power colloquia which collaborates with IEEE four times monthly in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Lightning flash density – 12 hourly averages over the year (NASA OTD/LIS) This shows that lightning is much more frequent in summer than in winter, and from noon to midnight compared to midnight to noon.

Issue: [14-105]

Category: Electrical, Telecommunication, Public Safety, Risk Management

Colleagues: Mike Anthony, Jim Harvey, Kane Howard


More

Installing lightning protection system for your facility in 3 Steps (Surge Protection)

IEEE Education & Healthcare Facility Electrotechnology

Readings: The “30-30” Rule for Outdoor Athletic Events Lightning Hazard

Churches and chapels are more susceptible to lightning damage due to their height and design. Consider:

Height: Taller structures are more likely to be struck by lightning because they are closer to the cloud base where lightning originates.

Location: If a church or chapel is situated in an area with frequent thunderstorms, it will have a higher likelihood of being struck by lightning.

Construction Materials: The materials used in the construction of the building can affect its vulnerability. Metal structures, for instance, can conduct lightning strikes more readily than non-metallic materials.

Proximity to Other Structures: If the church or chapel is located near other taller structures like trees, utility poles, or buildings, it could increase the chances of lightning seeking a path through these objects before reaching the building.

Lightning Protection Systems: Installing lightning rods and other lightning protection systems can help to divert lightning strikes away from the structure, reducing the risk of damage.

Maintenance: Regular maintenance of lightning protection systems is essential to ensure their effectiveness. Neglecting maintenance could result in increased susceptibility to lightning damage.

Historical Significance: Older buildings might lack modern lightning protection systems, making them more vulnerable to lightning strikes.

The risk can be mitigated by proper design, installation of lightning protection systems, and regular maintenance. 

Virginia Tech

Electrical Resource Adequacy

“When buying and selling are controlled by legislation,
the first things to be bought and sold are legislators.”
— P.J. O’Rourke

Comment on FERC Action

Our interest lies in closing a technical gap that exists upstream from the building service point and downstream from the utility supply point. Some, not all of it, can be accomplished with titles in the IEEE catalog. Given the strength of vertical incumbents in the electric power domain, we will submit a tranche of reliability concepts into the ASHRAE, NFPA and ICC catalogs — not so much with the expectation that they will be gratefully received — but that our proposals will unleash competitive energies among partisans in the standards setting industry.

Predictive Reliability Analysis of Power Distribution Systems Considering the Effects of Seasonal Factors on Outage Data Using Weibull Analysis Combined With Polynomial Regression


February 2024 Highlights 

Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis

January 2024 Highlights



Transmission Planning Using a Reliability Criterion

Readings / The Administrative State

In power system engineering, availability and reliability are two important concepts, but they refer to different aspects of the system’s performance.

Reliability:

  • Reliability refers to the ability of a power system to perform its intended function without failure for a specified period under given operating conditions. It is essentially a measure of how dependable the system is.
  • Reliability metrics often include indices such as the frequency and duration of outages, failure rates, mean time between failures (MTBF), and similar measures.
  • Reliability analysis focuses on identifying potential failure modes, predicting failure probabilities, and implementing measures to mitigate risks and improve system resilience.Availability:
  • Availability, on the other hand, refers to the proportion of time that a power system is operational and able to deliver power when needed, considering both scheduled and unscheduled downtime.
  • Availability is influenced by factors such as maintenance schedules, repair times, and system design redundancies.
  • Availability is typically expressed as a percentage and can be calculated using the ratio of the uptime to the total time (uptime plus downtime).
  • Availability analysis aims to maximize the operational readiness of the system by minimizing downtime and optimizing maintenance strategies.

Reliability focuses on the likelihood of failure and the ability of the system to sustain operations over time, while availability concerns the actual uptime and downtime of the system, reflecting its readiness to deliver power when required. Both concepts are crucial for assessing and improving the performance of power systems, but they address different aspects of system behavior.

 

November 2023 Highlights | FERC insight | Volume 10

Determining System and Subsystem Availability Requirements: Resource Planning and Evaluation

Comment: These 1-hour sessions tend to be administrative in substance, meeting the minimum requirements of the Sunshine Act. This meeting was no exception. Access to the substance of the docket is linked here.

Noteworthy: Research into the natural gas supply following Winter Storm Elliot.

 


August 14, 2003


 UPDATED POLICIES ON U.S. DECARBONIZATION AND TECHNOLOGY TRANSITIONS


June 15:FERC Finalizes Plans to Boost Grid Reliability in Extreme Weather Conditions

On Monday June 13th, Federal Energy Regulatory Commission commissioners informed the House Committee on Energy and Commerce that the “environmental justice” agenda prohibits reliable dispatchable electric power needed for national power security. One megawatt of natural gas generation does not equal one megawatt of renewable generation. The minority party on the committee — the oldest standing legislative committee in the House of Representatives (established 1795) — appears indifferent to the reliability consequences of its policy.

Joint Federal-State Task Force on Electric Transmission

“Our nation’s continued energy transition requires the efficient development of new transmission infrastructure. Federal and state regulators must address numerous transmission-related issues, including how to plan and pay for new transmission infrastructure and how to navigate shared federal-state regulatory authority and processes. As a result, the time is ripe for greater federal-state coordination and cooperation.”












 

Bibliography:

Natural Gas Act of 1938

Natural Gas Policy Act of 1978

Glossary of Terms Used in NERC Reliability Standards

The Major Questions Doctrine and Transmission Planning Reform

As utilities spend billions on transmission, support builds for independent monitoring

States press FERC for independent monitors on transmission planning, spending as Southern Co. balks

Related:

Homeland Power Security

At the July 20th meeting of the Federal Energy Regulatory Commission Tristan Kessler explained the technical basis for a Draft Final Rule for Improvements to Generator Interconnection Procedures and Agreements, On August 16th the Commission posted a video reflecting changes in national energy policy since August 14, 2003; the largest blackout in American history.

2024 Student Paper Competition

This year’s award cycle closed in June.

The next revision cycle will begin again during Worlds Standards Week in November.

“A Girl Writing; The Pet Goldfinch” 1870 Henriette Browne

 

For nearly twenty years now,  the American National Standards Institute Committee on Education administers a student paper competition intended to encourage understanding of the global standards system that also provides a solid prize — in the $1000 to $5000 range.  The topic of the 2024 Student Paper Competition will be What Role Do or Could Standards Play in Safe and Effective Implementation of Artificial Intelligence Applications/Systems?

Student Paper Competition Flyer 2024 – Entries due 7 June 2024

For the past six years Standards Michigan has hosted Saturday morning workshops to help students (and faculty) interested in entering the contest.   We will soon post those dates on our CALENDER.  We typically host them — three sessions ahead of the deadline — on Saturday mornings.

We provide links to previous paper winners and refer you to Lisa Rajchel: lrajchel@ansi.org for all other details.

Related:

“Normal” Things Americans Do That The Rest Of The World Will Never Understand

2023 Student Paper Competition

2022 Student Paper Competition

2020 Student Paper Winner / Remanufacturing

2020 Student Paper Winner / Road Traffic Safety

ANSI 2019 Student Paper Winner: Cybersecurity & Ukraine Power Grid Attack

2019 Student Paper Winner / Standards in Crisis Prevention & Response:

2018 ANSI Student Paper Winner / Internet of Things

2017 ANSI Student Paper Winner / Cyborg Gen 2330

2016 Student Paper Winner | Life, Liberty and Pursuit of Happiness

2016 Student Paper Winner / World Without Standards

United States Standards Strategy

History of the English Speaking Peoples

Michigan Central

Since so much of what we do in standards setting is built upon a foundation of a shared understanding and agreement of the meaning of words (no less so than in technical standard setting) that time is well spent reflecting upon the origin of the nouns and verbs of that we use every day.   Best practice cannot be discovered, much less promulgated, without its understanding secured with common language.

Word Counts

 

2024 Alumni Awards

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content