Tag Archives: M1

Loading
loading..

Ice Hockey Arena Lighting

National Collegiate Athletic Association: August 2022 IRS Form 900 Tax Filing

"People don’t notice whether it’s winter or summer when they’re happy" -- Anton Chekhov

After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.For almost all athletic facilities,  the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

 

During hockey season the document linked below provides information to illumination designers and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next colloquium on Sport facility codes and standards  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

"People don’t notice whether it’s winter or summer when they’re happy" -- Anton Chekhov

Issue: [15-138]*

Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs


LEARN MORE:

[1] Illumination Engineering Handbook

[2] IEEE 3001.9 Recommended Practice for Design of Power Systems for Supplying Lighting Systems for Commercial & Industrial Facilities

[3] IEEE 3006.1 Power System Reliability

 

* Issue numbering before 2016 dates back to the original University of Michigan codes and standards advocacy enterprise 

LSU

King’s Cake

Standards Louisiana

Heat Tracing Installation

“Vue de toits (effet de neige)” 1878 Gustave Caillebotte

One of the core documents for heat tracing is entering a new 5-year revision cycle; a consensus standard that is especially relevant this time of year because of the personal danger and property damage that is possible in the winter months.  Education communities depend upon heat tracing for several reasons; just a few of them listed below:

  • Ice damming in roof gutters that can cause failure of roof and gutter structural support
  • Piping systems for sprinkler systems and emergency power generation equipment
  • Sidewalk, ramp and stairway protection

IEEE 515 Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Industrial Applications is one of several consensus documents for trace heating technology.   Its inspiration originates in the petrochemical industry but its principles apply to all education facilities exposed to cold temperature and snow.   From its prospectus:

This standard provides requirements for the testing, design,installation, and maintenance of electrical resistance trace heating in general industries as applied to pipelines, vessels, pre-traced and thermally insulated instrument tubing and piping, and mechanical equipment. The electrical resistance trace heating is in the form of series trace heaters, parallel trace heaters, and surface heating devices. The requirements also include test criteria to determine the suitability of these heating devices utilized in unclassified (ordinary) locations.

Its principles can, and should be applied with respect to other related documents:

National Electrical Code Article 427

NECA 202 Standard for Installing and Maintaining Industrial Heat Tracing Systems

IEC 62395 Electrical resistance trace heating systems for industrial and commercial applications

 ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings

Lowell House / Harvard University

We are happy to explain the use of this document in design guidelines and/or construction specifications during any of our daily colloquia.   We generally find more authoritative voices in collaborations with the IEEE Education & Healthcare Facilities Committee which meets 4 times per month in Europe and in the Americas.  We maintain this title on the standing agenda of our Snow & Ice colloquia.  See our CALENDER for the next online meeting.

Issue: [18-331]

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

Category: Electrical, #SmartCampus


LEARN MORE:

Good Building Practice for Northern Facilities

Electrical Heat Tracing:International Harmonization Now and in the Future, IEEE Industry Standards Magazine, May/June 2002 pages 50-56

 

Fireplace Safety


Many accommodations such as dormitories, fraternities and sororities have working fireplaces — wood burning and natural gas.  Community spaces such as student unions, libraries and recreation spaces also have fireplaces as a central feature.

The purpose of NFPA 211 is to reduce fire hazards by discovering and promulgating best practice for the safe removal of flue gases, the proper installation of solid fuel-burning appliances, and the correct construction and installation of chimneys, fireplaces, and venting systems.  The current 2019 Edition is linked below:

Free Access: NFPA 221 Standard for Chimneys, Fireplaces, Vents, and Solid Fuel-Burning Appliances

The 2024 has been released.  To guide our inquiry into safety and sustainability concepts for the 2027 Edition we like review the developmental transcripts of previous edition:

Public Input Report

Second Revisions Report

Public comment on the First Draft of the 2027 Edition will be received until June 3, 2025.  We encourage facility managers to recommend improvements to this standard by setting up a (Free) NFPA account the link below:

Online submission of public input and public comments

We maintain this standard on our periodic Prometheus and Housing colloquia.  Consult our CALENDAR for the next online meeting, open to everyone

Link to parent standard:

Code ignis MMXXVII

NFPA 211: Articles and News

University of Rochester Fireplace Safety

American Gas Association: How Natural Gas Fuels Your Holiday Traditions

Natural Gas Transmission & Distribution

 

Winter Sport

 

“Indians Playing Lacrosse on the Ice” 1934 Yale University Art Gallery

The literature for designing, building and maintaining sport and recreation related spaces in education settlements cuts across so many safety and sustainability risk aggregations that, starting 2024, we begin breaking up the topic according to four seasons; mindful that not all seasons are present in all settlements at all times of the year.

Join us today when we sort through live public consultations on proposed changes to the most frequently referenced titles.


Hockey

Ice Hockey Arena Lighting


Figure Skating


Rifle


Recreation

Darts

Ice Fishing

Curling

Billiards


Swimming

Coetzenburg Swimming Pool


Related:

Readings / Sport, Culture & Society

Maths and Sport

National Center for Spectator Sports Safety and Security

Virtual reality technology in evacuation simulation of sport stadiums

 

Electrical heat tracing: international harmonization-now and in the future

 

Electrical heat tracing: international harmonization-now and in the future

C. Sandberg

Tyco Thermal Controls

N.R. Rafferty – M. Kleinehanding – J.J. Hernandez

E.I. DuPont de Nemours & Company, Inc 

 

Abstract:  In the past, electrical heat tracing has been thought of as a minor addition to plant utilities. Today, it is recognized as a critical subsystem to be monitored and controlled. A marriage between process, mechanical, and electrical engineers must take place to ensure that optimum economic results are produced. The Internet, expert systems, and falling costs of instrumentation will all contribute to more reliable control systems and improved monitoring systems. There is a harmonization between Europe and North America that should facilitate design and installation using common components. The future holds many opportunities to optimize the design.

CLICK HERE to order complete paper

 


Heat Tracing Installation

Industrial electroheating and electromagnetic processing

Pipe Heating

Heat Tracing

Outdoor Deicing & Snow Melting

Electrical Safety

“Snow at Argenteuil” | Claude Monet (1875)

Today our focus turns to outdoor electric deicing and snow melting wiring systems identified as suitable for the environment and installed in accordance with the manufacturer’s instructions.  They work silently to keep snow load from caving in roofs and icicles falling from gutters onto pedestrian pathways.

While the voltage and ampere requirement of the product itself is a known characteristic, the characteristic 0f the wiring pathway — voltage, ampere, grounding, short circuit, disconnect and control — is relatively more complicated and worthy of our attention.   Articles 426-427 of the National Electrical Code is the relevant part of the NEC

Free Access 2023 National Electrical Code

Insight into the ideas running through technical committee deliberations is provided by a review of Panel 17 transcripts:

2023 NEC Panel 17 Public Input Report (633 pages)

2023 NEC Panel 17 Public Comment Report (190 pages)

We hold Articles 427 in the middle of our priority ranking for the 2023 NEC.   We find that the more difficult issues for this technology is the determination of which trade specifies these systems — architectural, electrical, or mechanical; covered in previous posts.   Instead, most of our time will be spent getting IEEE consensus products in step with it, specifically ANSI/IEEE 515 and IEEE 844/CSA 293.

Comments on the Second Draft of the 2026 NEC will be received until April 18th.

454c656374726f746563686e6f6c6f6779

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with IEEE Standards Coordinating Committee 18 whose members are charged by the IEEE Standards Association to coordinate NFPA and IEEE consensus products.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer


LEARN MORE:

IEEE Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Heat Tracing for Commercial Applications

844.2/CSA C293.2-2017 – IEEE/CSA Standard for Skin Effect Trace Heating of Pipelines, Vessels, Equipment, and Structures–Application Guide for Design, Installation, Testing, Commissioning, and Maintenance

 

One Hundred Days of School

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content