Tag Archives: Summer

Loading
loading..
https://wvstateu.edu/news/wvsu-watermelon-research-published-in-the-plant-jo/

Vacation Bible School

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Watersport

Athletic Competition Timing Standards

Today we update our understanding of best practice catalogs for outdoor and indoor watersport; primarily swimming and rowing.  Use the login credentials at the upper right of our home page.

Natatoriums 300: Advanced Topics

Sapienza – Università di Roma

USA Swimming and the National Collegiate Athletic Association Swimming are two distinct organizations that oversee different aspects of competitive swimming in the United States. USA Swimming governs competitive swimming in the United States across all age groups and skill levels, while NCAA Swimming specifically focuses on collegiate-level swimming and diving competitions within the NCAA framework. Both organizations play crucial roles in the development and promotion of swimming in the United States.

Governing Body:

USA Swimming is the national governing body for the sport of swimming in the United States. It is responsible for overseeing competitive swimming at all levels, from grassroots programs to elite national and international competitions.
NCAA Swimming: NCAA Swimming is part of the National Collegiate Athletic Association (NCAA), which governs intercollegiate sports in the United States. NCAA Swimming specifically deals with collegiate-level swimming competitions among universities and colleges.

Scope:

USA Swimming is responsible for organizing and regulating competitive swimming for all age groups and skill levels, from youth swimmers to Masters swimmers (adults). It oversees swim clubs, hosts competitions, and develops national teams for international events.
NCAA Swimming: NCAA Swimming focuses exclusively on college-level swimming and diving competitions. It sets the rules and guidelines for swimming and diving programs at NCAA member institutions.

Membership:

Individuals, swim clubs, and teams can become members of USA Swimming, allowing them to participate in USA Swimming-sanctioned events, access coaching resources, and benefit from the organization’s development programs.
NCAA Swimming: NCAA Swimming is composed of collegiate athletes who compete for their respective universities and colleges. Athletes are typically student-athletes who represent their schools in NCAA-sanctioned competitions.

Competition Format:

USA Swimming hosts a wide range of competitions, including local, regional, and national meets, as well as Olympic Trials and international events. Swimmers compete as individuals, representing their swim clubs or teams.
NCAA Swimming: NCAA Swimming primarily consists of dual meets, invitational meets, and conference championships at the collegiate level. Swimmers represent their respective universities or colleges, earning points for their teams in dual meets and competing for conference and national titles.

Scholarships:

USA Swimming itself does not offer scholarships. Scholarships for competitive swimmers are typically awarded by colleges and universities based on an athlete’s performance and potential.
NCAA Swimming: NCAA member institutions offer scholarships to talented student-athletes in various sports, including swimming. These scholarships can cover tuition, room, board, and other expenses, making NCAA swimming an avenue for athletes to receive financial support for their education.

 


 

Swimming, Water Polo and Diving Lighting

Pool, Fountain, Agriculture & Water Infrastructure Electrical Safety

2026 National Electrical Code Workspace

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

Education communities have significant assets tied up in swimming pools, immersion pools, fountains, hydro-therapy installations (in hospitals and athletic training facilities) and flood control facilities (in congested, non-permeable parts of urban campuses) we have been keeping an eye on leading practice discovery for these installations in the 2020 National Electrical Code.

With electrical safety — i.e. shock protection — as the focus of this post*, the relevant parts of the 2020 NEC reside in Articles 680 and 682 are described below:

Article 680 applies to the construction and installation of electrical wiring for, and equipment in or adjacent all swimming, wading, therapeutic and decorative pools, fountains, hot tubs, spas and hydromassage bathtubs, whether permanently installed or storable, and to metallic auxiliary equipment, such as pumps, filters, and similar equipment.  The term body of water used throughout Part I applies to all bodies of water covered in this scope unless otherwise amended.

Article 682 applies to the installation of electrical wiring for, and the equipment in and adjacent to, natural or artificially made bodies of water not covered by other articles in the NEC, such as, but not limited to aeration ponds, fish farm ponds, storm retention basins, treatment ponds and irrigation (channel facilities.   Water depths may vary seasonally or be controlled.

When the 2020 NEC is released there will be hundreds (more like thousands) of experts who make their living on each NEC revision fanning out across the globe able and ready to interpret, advise and train.  We are not primarily a code training enterprise but we do get down into the weeds of electrical safety technical discussion where leading practice discovery discussion is recorded:

2020 NEC Article 680-682 Public Input | Pages 240 – 501

2020 NEC Articles 680-682 First Draft Report | Page 59 – 152

2020 NEC Articles 680-682 Public Comment Report

2020 NEC Articles 680-682 Second Draft Final Ballot

Transcripts superseded.  We refer to the 2026 Workspace linked at the top of this page.

We find interest in corrosion control, water bottle fill stations, water heating technologies, LED illumination as well as the usual editorial, correlation and concepts movement between articles.  From these transcripts it should also be plain that grounding and bonding practice, GFCI protection, luminaire location and wiring, corrosion management continue to be of primary interest in electrical safety assurance.   Related safety concepts appear in NFPA 70B and NFPA 70E.   Anything having to do with water; or the areas around water, are regions of elevated risk.

We are happy to discuss electrical safety standards any day at 11 AM Eastern time and host a monthly breakout teleconference dedicated to Electrical Power Safety in education facilities.  See our CALENDAR for the next online meeting.  We also collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets online four times monthly in European and American time zones.

Issue: [16-102]

Category: Electrical, Risk Management, Water,

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

*We leave the technical specifics of footcandle distribution to another, future post.


LEARN MORE:

2017 NEC changes for electrical safety in swimming pools

2020 NEC Changes (All Articles)

 

 

 

Air Conditioning

Ancient Air Conditioning | CLICK ON IMAGE

Today at 15:00 UTC we will review the latest in best practice literature for air conditioning systems.  Note that we have broken out this topic from the standing Mechanical colloquia.  Our approach features interoperability and system considerations.  Catalogs on the agenda:

ACCA

Air Conditioning System Construction & Maintenance

Air-Conditioning, Heating, and Refrigeration Institute

Standards and Guides

ASHRAE International

Standard 90.1-2022—Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings

Standard 90.4 Energy Standard for Data Centers

Acceptable Performance Standard for District Cooling Systems

ASME

Heating, Ventilating and Air-Conditioning Systems

European Standards

EN 14511 Specifies the requirements for air conditioners, liquid chilling packages, and heat pumps with electrically driven compressors.

IEEE

Occupant-Based HVAC Thermal Setpoints

International Code Council

International Building Code Interior Environment & HVAC Systems

International Mechanical Code Chapter 11 Refrigeration

NFPA

National Electrical Code Article 430: Motors, Motor Circuits and Motor Controllers

Standard for the Installation of Air-Conditioning and Ventilating Systems

Underwriters Laboratories (largely product standards, not embedded system nor interoperability titles)

Uptime Institute

Implementing Data Center Cooling Best Practices


Use the login credentials at the upper right of our home page


University of Rochester Central Utilities Plant Absorption Chiller

Issues: [11-67, 15-124, 15-135, 15-165]

Category: Energy, Mechanical

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben


 

 

Summer Olympics

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Annabelle Hydrangea

Summer Week 25 | June 16 – June 22

 


Monday | 16 June | Colloquium 15:00 UTC

Campus Child Day Care


Tuesday | 17 June | Colloquium 15:00 UTC

Data Centers


Wednesday | 19 June | Colloquium 15:00 UTC

print (“Hello World!”)


Thursday | 20 June | Colloquium 15:00 UTC

Modular Classrooms


Friday | 21 June | Colloquium 15:00 UTC

Observatories & Planetariums


Saturday | 22 June


Sunday | 23 June


Occupant-Based HVAC Thermal Setpoints

Occupant-based HVAC Set Point Interventions for Energy Savings in Buildings

Dimas Ardiyanto
PT PLN (Persero), Jakarta, Indonesia
Manisa Pipattanasomporn & Saifur Rahman
Virginia Tech – Advanced Research Institute, Arlington, VA, USA
Nanang Hariyanto & Suwarno
School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

 

Abstract:  Energy savings and occupant thermal comfort are the two most important factors in controlling heating ventilation and air conditioning (HVAC) operation in buildings. Typically, it is found that thermal comfort is not always met in buildings. Hence, there is still an opportunity to improve indoor thermal comfort, and at the same time save energy by controlling HVAC set points. The objective of this paper is to propose a method to obtain energy savings by adjusting HVAC set points based on occupant comfort measured using Predicted Mean Vote (PMV) and occupancy information. The idea is to calculate hourly PMV values based on real-time occupancy information, indoor temperature set points and humidity in a building. Then, a new set of temperature set points that can maintain occupant comfort, i.e., PMV = 0, is derived. To evaluate the effectiveness of the proposed method, a building model is developed in eQUEST using the information from a real-world building located in Alexandria, VA. Research findings indicate that HVAC electrical consumption savings of 14.58% is achieved when the proposed set point adjustment method is implemented as compared to that of the base case. To study the impact of adding occupancy information on HVAC energy savings, another scenario is simulated where HVAC set point is increased when the building is unoccupied, e.g., during lunchtime or holidays. Research findings indicate that additional HVAC electrical consumption savings of 8.79% is achieved when taking into account occupancy information in HVAC control.

 

Document Sections
I. Introduction
II. PMV as an Index for Thermal Comfort
III. Experiment Set Up To Capture Occupancy Information
IV. Building Model Development in Equest
V. Energy Savings From Comfort Adjustment And Occupancy Information

CLICK HERE for ordering Information for this article

DRINKING, WASTEWATER & STORMWATER SYSTEMS

“Fille romaine à la fontaine” 1875 Léon Bonnat

Civilization has historically flourished around rivers and major waterways.  Mesopotamia, the so-called cradle of civilization, was situated between the major rivers Tigris and Euphrates; the ancient society of the Egyptians depended entirely upon the Nile. Rome was also founded on the banks of the Italian river Tiber. Large metropolises like Rotterdam, London, Montreal, Paris, New York City, Buenos Aires, Shanghai, Tokyo, Chicago, and Hong Kong owe their success in part to their easy accessibility via water and the resultant expansion of trade. Islands with safe water ports, like Singapore, have flourished for the same reason. In places such as North Africa and the Middle East, where water is more scarce, access to clean drinking water was and is a major factor in human development.*

With this perspective, and our own “home waters” situated in the Great Lakes, we are attentive to water management standardization activity administered by International Organization Standardization Technical Committee 224 (ISO TC/224).  The scope of the committee is multidimensional; as described in the business plan linked below:

BUSINESS PLAN ISO/TC 224

 

Water-related management standards define a very active space; arguably, as fast-moving a space as electrotechnology.   The ISO TC/224 is a fairly well accomplished committee with at least 16 consensus products emerging from a 34 nations led by Association Française de Normalisation (@AFNOR) as the global Secretariat and 34 participating nations.   The American Water Works Association is ANSI’s US Technical Advisory Group administrator to the ISO.

We do not advocate the user interest in this standard at the moment but encourage educational institutions with resident expertise — either on the business side or academic side of US educational institutions — to participate in it.   You are encouraged to communicate directly with Paul Olson at AWWA, 6666 W. Quincy Avenue, Denver, CO 80235, Phone: (303) 347-6178, Email: polson@awwa.org.

The work products of TC 224 (and ISO 147 and  ISO TC 282) are also on the standing agendas of our Water, Global and Bucolia colloquia.  See our CALENDAR for the next online meeting, open to everyone.

Issue: [13-163]

Category: Global, Water

Colleagues: Mike Anthony, Christine Fischer, Jack Janveja. Richard Robben, Larry Spielvogel

Standing Agenda / Water


Qualität der Wasserversorgung

Lightning protection techniques for roof-top PV systems

Lightning protection techniques for roof-top PV systems

Narjes Fallah, et. al

Centre for Electromagnetic and Lightning Protection Research (CELP), Electrical & Electronic Engineering Department, Universiti Putra Malaysia, Malaysia

ABSTRACT: In this paper, the lightning protection requirements of a typical residential building have been discussed and techniques have been provided to protect the building from both direct and indirect damages of lightning, with special attention to the protection of PV panels placed on the roof. These techniques include the designing challenges and also the type of devices which can be used to reduce the surge current flow and magnetic field. It has been shown that for buildings with roof top PV systems only the avoidance of lightning attachment to unprotected parts of the building is not sufficient. Lightning currents passing through the lightning protection system may still affect the PV power system through inductive coupling. Hence strategic placement of PV systems and shielding of conducting systems wherever possible has been recommended. It has also been envisaged that the impact of lightning on PV systems is directly related to the isokeraunic level of the region and elevation of the building. Several recommendations have been proposed in designing the air termination system for a roof with PV panels in high isokeraunic regions. Finally the building integrated photo voltaic (BIPV) projects which are conducted in Malaysia have been evaluated..

 

CLICK HERE to order complete paper.

 

Readings:

IEEE Guide for Solar Power Plant Grounding for Personnel Protection

Risk Assessment of Rooftop-Mounted Solar PV Systems

Analysis of Lightning Surge Effects on Small-Scale Rooftop Photovoltaic Systems

Dehn-International White Paper: Lightning and surge protection for rooftop photovoltaic systems

Lightning Protection Systems

 

Lightning Protection Systems

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content