The framework primarily serves educational and research purposes, where it is often important to identify groups of roughly comparable institutions. The classification includes all accredited, degree-granting colleges and universities in the United States that are represented in the National Center for Education Statistics Integrated Postsecondary Education Data System.
Giovanni Paolo Panini, An architectural capriccio with figures among Roman ruins
The post-pandemic #WiseCampus transformation requires significant capital to meet the sustainability goals of its leadership. Campuses are cities-within-cities and are, to a fair degree, financed in a similar fashion. Tax-free bonds are an effective instrument for school districts, colleges and universities — and the host community in which they are nested — for raising capital for infrastructure projects while also providing investors with, say $10,000 to $100,000, to allocate toward a tax-free dividend income stream that produces a return in the range of 2 to 8 percent annually.
An aging population may be receptive to investment opportunities that protect their retirement savings from taxation.
Once a month, we walk through the prospectuses of one or two bond offerings of school districts, colleges and universities and examine offering specifics regarding infrastructure construction, operations and maintenance. We pay particular attention to details regarding “continuing operations”. Somehow the education industry has to pay for its green agenda. See our CALENDAR for the next Finance colloquium; open to everyone.
The interactive map provided by Electronic Municipal Market Access identifies state-by-state listings of tax-free bonds that contribute to the construction and operation of education facilities; some of which involved university-affiliated medical research and healthcare delivery enterprises.
CLICK ON IMAGE FOR INTERACTIVE MAP
If you need help cutting through this list please feel free to click in any day at 11 AM Eastern time. Use the login credentials at the upper right of our hope page. We collaborate with subject matter experts at Municipal Analytics and UBS.
*We see the pandemic as a driver for a step-reduction in cost in all dimensions of education communities. We coined the term with a hashtag about two years ago.
*College and university infrastructure projects are classified with public school districts under the rubric “municipal bonds” at the moment. CLICK HERE for more information.
As of January 2022, there were a few municipalities in the United States that allowed non-citizens to vote in local elections, but no entire states. These municipalities included:
San Francisco, California: Non-citizens are allowed to vote in school board elections.
Chicago, Illinois: Non-citizens are allowed to vote in school board elections.
Takoma Park, Maryland: Non-citizens are allowed to vote in local elections.
It’s worth noting that these policies may change over time as local governments make decisions regarding voting rights. For the most up-to-date information, it’s best to consult the specific laws and regulations of each municipality or state.
“Election Day, 1944” | Norman Rockwell for the Saturday Evening Post
School bond elections — either at county or district level — are processes through which communities vote to authorize the issuance of bonds to fund various projects and improvements in their local school districts. The elections determine the quality of educational settlements –new school buildings, renovating existing facilities, upgrading technology, and improving safety measures. The outcomes of these elections directly affect the quality of education and learning environments for students within the county. Successful bond measures can stimulate economic growth by creating jobs and attracting families to the area.
Community involvement and voter turnout are essential in determining the allocation of resources and shaping the quality of life for its citizens. In recent years, however, voter ambivalence about the education “industry” in general, the rise of home schooling and other cultural factors, complicate choices presented to voters.
Energy 400: Codes and standards for energy systems between campus buildings. (District energy systems including interdependence with electrical and water supply)
A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation. Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.
Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:
There are other ad hoc and open-source consortia that occupy at least a niche in this domain. All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.
Please join our daily colloquia using the login credentials at the upper right of our home page.
ICYMI – here is our 50th anniversary lecture from Professor Helen Thompson on the 1970s energy crises and what we can learn from it, with some great questions from our audience! https://t.co/9XUqc3fx5fpic.twitter.com/zHvqY8HYL1
Witches; Brew Incantation | Macbeth, Act 4, Scene 1
First Witch
Round about the cauldron go;
In the poison’d entrails throw.
Toad, that under cold stone
Days and nights has thirty-one
Swelter’d venom sleeping got,
Boil thou first i’ the charmed pot.
ALL
Double, double toil and trouble;
Fire burn, and cauldron bubble.
Second Witch
Fillet of a fenny snake,
In the cauldron boil and bake;
Eye of newt and toe of frog,
Wool of bat and tongue of dog,
Adder’s fork and blind-worm’s sting,
Lizard’s leg and owlet’s wing,
For a charm of powerful trouble,
Like a hell-broth boil and bubble.
ALL
Double, double toil and trouble;
Fire burn and cauldron bubble.
Third Witch
Scale of dragon, tooth of wolf,
Witches’ mummy, maw and gulf
Of the ravin’d salt-sea shark,
Root of hemlock digg’d i’ the dark,
Liver of blaspheming Jew,
Gall of goat, and slips of yew
Silver’d in the moon’s eclipse,
Nose of Turk and Tartar’s lips,
Finger of birth-strangled babe
Ditch-deliver’d by a drab,
Make the gruel thick and slab:
Add thereto a tiger’s chaudron,
For the ingredients of our cauldron.
ALL
Double, double toil and trouble;
Fire burn and cauldron bubble.
#BrockU is applying to @TIPS_SPIIE Canada Excellence Research Chairs program with the goal of securing a #CERC in Sustainable Agriculture for Grape & Wine. Global scholars interested in leading Brock’s CERC team are encouraged to apply. Learn more ➡️ https://t.co/vUlVaymFs8pic.twitter.com/pOAMTILIS6
“Landscape with a Farm House and Windmill” (1680) / Jacob Isaaksz van Ruisdael
We have always taken a forward-looking approach to the National Electrical Code (NEC) because there is sufficient supply of NEC instructors and inspectors and not enough subject matter experts driving user-interest ideas into it. Today we approach the parts of the 2023 NEC that cover wiring safety for microgrid systems; a relatively new term of art that appropriates safety and sustainability concepts that have existed in electrotechnology energy systems for decades.
Turn to Part II of Article 705 Interconnected Electric Power Production Sources:
You will notice that microgrid wiring safety is a relatively small part of the much larger Article 705 Content. There were relatively minor changes to the 2017 NEC in Section 705.50 — but a great deal of new content regarding Microgrid Interconnection Devices, load side connections, backfeeding practice and disconnecting means — as can be seen in the transcripts of Code-Making Panel 4 action last cycle:
Keep in mind that the NEC says nothing (or nearly very little, in its purpose stated in Section 90.2) about microgrid economics or the life cycle cost of any other electrical installation. It is the claim about economic advantages of microgrids that drive education facility asset management and energy conservation units to conceive, finance, install, operate and — most of all — tell the world about them.
In previous posts we have done our level best to reduce the expectations of business and finance leaders of dramatic net energy savings with microgrids — especially on campuses with district energy systems. Microgrids do, however, provide a power security advantage during major regional contingencies — but that advantage involves a different set of numbers.
Note also that there is no user-interest from the education facility industry — the largest non-residential building construction market in the the United States — on Panel 4. This is not the fault of the NFPA, as we explain in our ABOUT.
The 2023 NEC was released late last year.
The 2026 revision cycle is in full swing with public comment on the First Draft receivable until August 24, 2024. Let’s start formulating our ideas using the 2023 CMP-4 transcripts. The link below contains a record of work on the 2023 NEC:
We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones. Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with other IEEE professional societies.
Mike Anthony’s father-in-law and son maintaining the electrical interactive system installed in the windmill that provides electricity to drive a pump that keeps the canal water at an appropriate level on the family farm near Leeuwarden, The Netherlands.
Partial listing. We have until July 15th to comment on committee action
Our proposal G153-25: Page 754
Michigan Modular G195-25: Page 859
“Clinical Need” definition for enhanced security: Page 765
“Electric Vehicle Charger” definition by the National Parking Association/Parking Consultant’s Council: Page 457
“EV Charging Space” definition: Page 458
“EV Supply Equipment” definition: Page 460
ADM20-25 Authority of building official in natural disasters and high hazard regions, p141
ASM3-25 Electrical equipment re-use, p195
G2-25. New definition for Animal Housing Facilities, p438
S57-25. Quite a bit of back and forth on wind and PV “farms, p1053, et. al (“Wind and solar farms are different from animal and produce farms” — Mike Anthony)
G143-25 Lighting Section 1204L remote rooms, windowless rooms, University of Texas Austin student accommodation costs, p. 737-
PM31-25 Housekeeping and sanitation in owned property as law, p1794
PM50-25, Sleeping units to be private, p.1829
RB146-25. Energy storage systems installed in garages, requirements for physical protection, p. 2195
RB144-25, Load capacity ratings and compliance with NFPA 855, p. 2186
RB143-25, Working roof walking access around solar panels, p. 2180
SP1-25 New definition of base flood elevation for purpose of correlating requirements for electrical safety, et. al, p. 2578
These Guidelines cover fossil-fueled power plants, gas-turbine power plants operating in combined cycle, and a balance-of-plant portion including interface with the steam supply system of nuclear power plants. They include performance monitoring concepts, a description of various methods available, and means for evaluating particular applications.
Since the original publication of these Guidelines in 1993—then limited to steam power plants—the field of performance monitoring (PM) has gained considerable importance. The lifetime of plant equipment has been improved, while economic demands have increased to extend it even further by careful monitoring. The PM techniques themselves have also been transformed, largely by the emergence of electronic data acquisition as the dominant method of obtaining the necessary information.
These Guidelines present:
• “Fundamental Considerations”—of PM essentials prior to the actual application, so you enter fully appraised of all the requirements, potential benefits and likelihood of tradeoffs of the PM program.
• “Program Implementation”—where the concepts of PM implementation, diagnostics and cycle interrelationships have been brought into closer conjunction, bringing you up-to-date with contemporary practice.
• “Case Studies / Diagnostic Examples”—from the large amount of experience and historical data that has been accumulated since 1993.
Intended for employees of power plants and engineers involved with all aspects of power production.
From ANSI’s PINS registry:
Project Need: This document is being developed in order to address performance monitoring and optimization techniques for different power generating facilities. The latest trends and initiatives in performance monitoring as well as practical case studies and examples will be incorporated.
Stakeholders: Designers, producers/manufacturers, owners, operators, consultants, users, general interest, laboratories, regulatory/government, and distributors.
This document will cover power generation facilities including steam generators, steam turbines, and steam turbine cycles (including balance of plant of nuclear facilities), gas turbines, and combined cycles. The guidelines include performance monitoring concepts, a description of various methods available, and means for evaluating particular applications.
No drafts open for public consultation at this time. The PINS announcement was placed on October 11th*. The PINS registry is a stakeholder mapping platform that identifies the beginning of a formal process that may interest other accredited, competitor standards developers. Many ASME consensus products may be indirectly referenced in design guidelines and construction contracts with the statement “Conform to all applicable codes”
The landing page for the ASME standards development enterprise is linked below:
Note that you will need to set up a (free) account to access this and other ASME best practice titles.
We maintain all ASME consensus products on the standing agenda of our periodic Mechanical and Energy teleconferences. See our CALENDAR for the next online meeting; open to everyone.
Best practice literature to be covered in our 11 AM session today are listed below. These codes and standards ensure safety, reliability, and compliance for underground electrical and telecommunications installations:
Relevance: The NEC, published by the National Fire Protection Association, is the primary standard for safe electrical installations in the U.S. Articles 300 (Wiring Methods), 310 (Conductors for General Wiring), and 230 (Services) cover underground wiring, including burial depths, conduit requirements, and direct-burial cables like Type UF and USE-2. For example, NEC 300.5 specifies minimum cover depths (e.g., 24 inches for direct-burial cables, 18 inches for PVC conduit).
Key Aspects: Rules for conductor protection, grounding, GFCI requirements, and conduit types (e.g., Schedule 80 PVC). Adopted by most U.S. jurisdictions with local amendments.
ANSI/TIA-568 Series (Commercial Building Telecommunications Cabling Standards)
Relevance: Governs low-voltage telecommunications cabling, including underground installations. TIA-568.2-D (Balanced Twisted-Pair) and TIA-568.3-D (Optical Fiber) specify performance requirements for cables like Cat6 and fiber optics, including maximum distances (e.g., 100 meters for twisted-pair).
Key Aspects: Ensures signal integrity, proper separation from high-voltage lines, and compliance for plenum or direct-burial-rated cables. Voluntary unless mandated by local codes.
IEEE 835 (Standard Power Cable Ampacity Tables)
Relevance: Provides ampacity ratings for underground power cables, critical for sizing conductors to prevent overheating.
Key Aspects: Includes data for direct-burial and ducted installations, considering soil thermal resistivity and ambient conditions. Often referenced alongside NEC for high-current applications.
UL 83 (Standard for Thermoplastic-Insulated Wires and Cables)
Relevance: Underwriters Laboratories standard for wires like THWN-2, commonly used in underground conduits. Ensures cables meet safety and performance criteria for wet locations.
Key Aspects: Specifies insulation durability, temperature ratings, and suitability for direct burial or conduit use. NEC requires UL-listed cables for compliance.
OSHA 1910.305 (Wiring Methods, Components, and Equipment)
Relevance: U.S. Occupational Safety and Health Administration standard for workplace electrical safety, including underground installations in industrial settings.
Key Aspects: Specifies approved wiring methods (e.g., armored cable, conduit) and enclosure requirements for underground cable trays or boxes. Focuses on worker safety during installation and maintenance.
CSA C22.1 (Canadian Electrical Code)
Relevance: Canada’s equivalent to the NEC, governing underground electrical installations. Similar to NEC but tailored to Canadian conditions and regulations.
Key Aspects: Defines burial depths, conduit types, and grounding requirements. For example, low-voltage cables (<30V) require 6-inch burial depth, like NEC.
Notes:
Regional Variations: Always consult local building authorities, as codes like the NEC or AS/NZS 3000 may have amendments. For example, some U.S. states reduce burial depths for GFCI-protected circuits (NEC 300.5).
Low-Voltage vs. High-Voltage: Standards like TIA-568 and ISO/IEC 11801 focus on low-voltage (e.g., <50V) telecommunications, while NEC and IEC 60364 cover both power and telecom.
Practical Compliance: Before installation, call 811 (U.S.) or equivalent to locate underground utilities, and obtain permits/inspections as required by local codes.
Critical Examination: While these standards are authoritative, they can lag behind technological advancements (e.g., new cable types like GameChanger exceeding TIA-568 limits). Over-reliance on minimum requirements may limit performance for cutting-edge applications.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T