This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
Today we examine the catalog of several ANSI-accredited, consortia and ad hoc standard developers with titles relevant to the planning, construction and management of the built environment of education communities nested within human settlements characterized by a high population density, extensive infrastructure, and various economic, social, and cultural activities. In other words, from the point of view of a campus as a “city within a city” with attention to infrastructure.
Several organizations and bodies in the United States that develop model codes and standards related to zoning and land use. These model codes and standards are often adopted or referenced by municipalities in their zoning ordinances. Here are some prominent organizations and their model codes:
Each of the foregoing titles have some bearing upon decisions about land use. However, keep in mind, that zoning regulations are primarily established at the local level by municipalities, cities, and counties, rather than through national standard bodes. These organizations and their codes provide guidance and best practices for zoning, but specific regulations can vary significantly between different jurisdictions. They are frequently incorporated by reference into regulations by governments at all levels.
Join us today with the login credentials at the upper right of our home page.
Here are some community colleges in the United States that are embedded within cities, offering students the advantages of an urban setting:
City College of San Francisco – San Francisco, California
Los Angeles City College – Los Angeles, California
Borough of Manhattan Community College – New York, New York
Miami Dade College – Wolfson Campus – Miami, Florida
City College of Chicago – Chicago, Illinois
Seattle Central College – Seattle, Washington
Austin Community College – Rio Grande Campus – Austin, Texas
Houston Community College – Central Campus – Houston, Texas
San Antonio College – San Antonio, Texas
Portland Community College – Cascade Campus – Portland, Oregon
Washtenaw Community College – Ann Arbor-Ypsilanti, Michigan
These community colleges not only provide access to higher education but also offer the benefits of being located within major urban centers, including proximity to job markets, cultural institutions, and public transportation.
*After the Roman period, Bath remained a small town until the 18th century, when it became a fashionable spa destination for the wealthy. The architect John Wood the Elder designed much of the city’s Georgian architecture, including the famous Royal Crescent and the Circus. Bath also played an important role in the English literary scene, as several famous authors, including Jane Austen, lived and wrote in the city. During the 19th century, Bath’s popularity declined as other spa towns became fashionable. In the 20th century, the city experienced significant redevelopment and preservation efforts, including the restoration of its Roman baths and the construction of a new spa complex.
Today, Bath is a UNESCO World Heritage Site and a popular tourist destination known for its historical and cultural significance.
The Swedish Standards Institute for Standards is the Global Secretariat for ISO TC/211 which leads standardization in the field of digital geographic information. Standardization titles developed by this committee aims to establish a structured set of standards for information concerning objects or phenomena that are directly or indirectly associated with a location relative to the Earth. These standards may specify, for geographic information, methods, tools and services for data management (including definition and description), acquiring, processing, analyzing, accessing, presenting and transferring such data in digital / electronic form between different users, systems and locations.
We maintain all ISO projects on the standing agenda of our Global and ICT colloquia which are open to everyone. You may communicate with Jennifer Garner (jgarner@itic.org) if you wish to participate in standards-setting activity from the United States point of view. Keep in mind that our network of education communities outside the United States is significant and long-standing.
Issue: [16-141]
Category: Global, Information & Communications Technology
Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Richard Robben
In the United States, land surveying is regulated by various professional organizations and government agencies, and there are several technical standards that must be followed to ensure accuracy and consistency in land surveying.
The best practice for land surveying is set by the “Manual of Surveying Instructions” published by an administrative division of the United States Department of the Interior responsible for managing public lands in the United States. The manual provides detailed guidance on the procedures and techniques for conducting various types of land surveys, including public land surveys, mineral surveys, and cadastral surveys.
Another important set of model standards for land surveying is the Minimum Standards for Property Boundary Surveys* published by the National Society of Professional Surveyors. These standards provide guidance on the procedures and techniques for conducting property boundary surveys, including the use of appropriate surveying equipment, the preparation of surveying maps and plats, and the documentation of surveying results. Land surveyors in the United States are also required to adhere to state and local laws and regulations governing land surveying, as well as ethical standards established by professional organizations such as the American Society of Civil Engineers.
The Morrill Land-Grant Act of 1862 granted each state 30,000 acres of federal land for each member of Congress from that state to establish colleges that would teach agriculture, engineering, and military tactics. This legislation led to the establishment of many public universities, including the Texas A&M University, the University of Wisconsin and Michigan State University.
Electrical storage system resides at the Massachusetts Institute of Technology’s Vail Access Project
Today at 15:00 UTC we refresh our understanding of stabilized technical standards for electrical energy storage systems (ESS) for industrial and commercial applications. Adhering to these standards ensures ESS reliability, protects personnel, and supports the growing adoption of energy storage in industrial and commercial settings.
Ω NFPA 855 – Standard for the Installation of Stationary Energy Storage Systems: This U.S.-based standard provides comprehensive guidelines for ESS installations, focusing on safety for lithium-ion, flow, and other battery technologies. It covers system siting, fire protection, ventilation, and thermal management. NFPA 855 mandates minimum clearances from buildings and exposures, requires fire detection and suppression systems (e.g., sprinklers or gas-based systems), and specifies exhaust systems to manage off-gassing risks. It also addresses commissioning, maintenance, and decommissioning to prevent hazards like thermal runaway.
Ω NEC (NFPA 70) – National Electrical Code, Article 706: Article 706 of the NEC governs ESS electrical design, emphasizing safe integration with power systems. It requires proper grounding, overcurrent protection, and disconnecting means for battery systems. The standard specifies wiring methods, labeling for hazard awareness, and compatibility with grid interconnection. For commercial and industrial ESS, it mandates compliance with voltage and capacity limits, ensuring systems are designed to handle high-power demands safely. 2026 CMP-16 Public Input Report | 2026 CMP-16 Second Draft Report
Ω UL 9540 – Standard for Energy Storage Systems and Equipment:UL 9540 certifies the safety of ESS, including battery packs, inverters, and control systems. It requires systems to undergo rigorous testing for electrical safety, fire resistance, and thermal runaway prevention. For large-scale commercial installations, UL 9540A, a test method for evaluating thermal runaway fire propagation, is critical to ensure systems can contain or mitigate fire risks. Compliance is often required for local code approvals.
Ω IEEE 1547 – Standard for Interconnecting Distributed Resources with Electric Power Systems: For ESS connected to utility grids, IEEE 1547 specifies requirements for interconnection, including power quality, voltage regulation, and anti-islanding protection. It ensures ESS can safely operate in parallel with the grid, providing ancillary services like frequency regulation or peak shaving without compromising grid stability.
Ω Local Building and Fire Codes: Beyond national and international standards, local jurisdictions — such as college town sustainability initiatives — often enforce additional requirements. Apart from the primary goal of saving energy specific design and construction requirements may apply. These may include specific setback distances, fire-rated enclosures, or emergency response plans tailored to the facility’s size and location. City of Ann Arbor Construction & Building
Compliance with these standards involves collaboration among engineers, installers, and inspectors. Systems must be designed with robust BMS, cooling, and fire mitigation, constructed with high-quality materials, and regularly maintained to meet safety and performance expectations.
Use the login credentials at the upper right of our home page.
Related, but not covered today:
Utility scale (high voltage) owned and operated by merchant utilities.
Ω IEC 62619 – Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes: This international standard focuses on the safety of lithium-ion batteries used in industrial ESS. It outlines requirements for cell and module testing, including electrical, mechanical, and environmental stress tests to prevent failures like short circuits or fires. IEC 62619 also specifies battery management system (BMS) requirements to monitor voltage, temperature, and state-of-charge, ensuring operational stability.
Ω IEC 62485-2 – Safety Requirements for Secondary Batteries and Battery Installations: This standard applies to stationary battery systems, addressing electrical safety, installation practices, and maintenance. It emphasizes protection against electric shock, overcurrent, and short-circuit risks, requiring robust insulation and fault detection systems.
“Mount Fuji from Lake Yamanaka” Takahashi Shōtei (1871-1945) | Los Angeles County Museum of Art
The Japanese Standards Association is the Global Secretariat for a standardization project devoted to the discovery and promulgation of common methods and guidelines for coordinated lifetime management of network assets in power systems to support good asset management. In addition, this may include the development of new methods and guidelines required to keep pace with development of electrotechnologies excluding generation assets; covered by other IEC standards.
There has, and will continue to be significant investment in electricity assets which will require ongoing management to realise value for the organizations. In the last 5 years, there has been USD 718 billion investment for electricity, spending on electricity networks and storage continued, reaching an all-time high of USD 277 billion in 2016. In the United States (17% of the total) and Europe (13%), a growing share is going to the replacement of ageing transmission and distribution assets. A more fully dimensioned backgrounder on the business environment that drives the market for this title is available in the link below:
It is early in this project’s lifecycle; far too early to find it referenced in public safety and energy laws in the United States where it would affect #TotalCostofOwnership. Where we should, we follow the lead of the USNC/IEC for the United States, while still mindful that many of our IEEE colleagues follow the lead of their own national standards body.
Because this project fills an obvious gap in good practice literature we maintain this project on our 4 times monthly electrotechnology colloquium that we co-host with the IEEE Education & Healthcare Facilities Committee. See our CALENDAR for the next online meeting; open to everyone.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T