Author Archives: mike@standardsmichigan.com

Loading
loading...

Earth Energy Systems

Geothermal systems cool buildings by leveraging the stable temperatures found beneath the Earth’s surface. A geothermal heat pump system consists of a ground loop, heat exchanger, and distribution system.

In cooling mode, the system extracts heat from the building and transfers it to the ground. The ground loop, typically composed of pipes buried horizontally or vertically, circulates a fluid that absorbs heat from the building’s interior. The fluid, warmed by this process, is then pumped through the ground loop where the Earth’s cooler temperatures absorb the heat, effectively dissipating it into the ground.

The cooled fluid returns to the heat pump, which distributes the now-cooler air throughout the building via the distribution system, such as ductwork. This process is highly efficient because the ground maintains a relatively constant temperature year-round, allowing the geothermal system to operate with less energy compared to traditional air-source cooling methods.

At the moment, though the technology has been made practical since Prince Piero Ginori Conti’s discovery in 1904, and has since tracked well in local building codes and environmental regulations, the bibliography for earth energy systems is nascent and relatively thin.  One trade association is emerging from the gathering pace of applications and case studies: Closed-Loop/Geothermal Heat Pump Systems Design and Installation Standards

We maintain the IGSHPA catalog on the standing agenda of our Energy, Mechanical and Air Conditioning colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Partial Bibliography:

Handbook of Best Practices for Geothermal Drilling

Best Practices for Designing Geothermal Systems

Geothermal Direct Use Engineering and Design Guidebook

International Standards

ISO 13612-1:2014 – Heating and cooling systems in buildings — Method for calculation of the system performance and system design for heat pump systems — Part 1: Design and dimensioning.

    • This standard covers the design and performance calculation of geothermal heat pump systems.

ISO 14823:2017 – Intelligent transport systems — Graphic data dictionary.

    • While not specific to geothermal, this standard includes data relevant to various systems, including geothermal energy systems.

ISO 52000-1:2017 – Energy performance of buildings — Overarching EPB assessment — Part 1: General framework and procedures.

    • This standard provides a general framework for assessing the energy performance of buildings, which includes geothermal systems.

IEC 61753-111-7:2014 – Fibre optic interconnecting devices and passive components – Performance standard – Part 111-7: Sealed closures for category S – Subterranean environments.

    • Relevant for the installation of geothermal systems that include fiber optic components in subterranean environments.

North American  Standards

CSA C448: Design and installation of earth energy systems.

ANSI/CSA C448 Series-16 – Design and Installation of Earth Energy Systems.

    • This standard covers the design and installation of geothermal heat pump systems in the United States, providing guidelines on installation practices, materials, and system performance.

ASHRAE Standard 90.1 – Energy Standard for Buildings Except Low-Rise Residential Buildings.

    • This standard sets the minimum energy efficiency requirements for the design and construction of buildings, including the installation of geothermal systems.

IGSHPA Standards – International Ground Source Heat Pump Association (IGSHPA) Standards.

    • The IGSHPA develops standards for the design and installation of geothermal heat pump systems, with a focus on closed-loop systems.

NFPA 54 – National Fuel Gas Code.

    • Although primarily focused on fuel gas systems, this standard may intersect with geothermal systems when they involve hybrid solutions that include gas heating.

EPA Standards for Geothermal Energy (40 CFR Part 144) – Underground Injection Control (UIC) Program.

    • This standard regulates the injection of fluids into underground wells, relevant for geothermal systems that involve deep wells for heat exchange.

UL 1995 – Heating and Cooling Equipment.

    • This standard applies to the safety of heating and cooling equipment, including geothermal heat pumps.

“Neptune’s Horses” 1919 | Walter Crane

Viking Cafe

Mercer County is famous for the Battle of Trenton during the American Revolutionary War. On December 26, 1776, General George Washington led a surprise attack across the Delaware River, resulting in a crucial victory against the Hessian forces stationed in Trenton. This victory boosted the morale of the Continental Army and is considered a turning point in the Revolutionary War.

Mercer County Community College Financial Statement 2023: $82,503,849

2024 International Fire Code: Section 606 Commercial Cooking Equipment and Systems

Culinary Students Taught to Cook Up Plant-Based Cuisine

MCCC Welcomes You

Standards New Jersey


Reliability

SDC3006_Power_System_Reliability_WG_Minutes_2024-05-20

WG Meeting Agenda August 2024_final


Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward Hopper

We are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2028 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of computing systems.

Marina & Boatyard Electrical Safety

Rowing at the 2024 Summer Olympics

“The Biglin Brothers Racing| Thomas Eakins (1872)

Rowing competition in the 2024 Olympics inspires a  revisit of NFPA 303: Fire Protection Standard for Marinas and Boatyards.  Apart from athletic competition, many colleges, universities and trade schools with academic programs are responsible for safety of facilities located on fresh and saltwater shorelines.  Other nations refer to best practice discovered and applied in the United States.   Keep in mind that, unlike other nations, the standard of care for electrical safety in the United States is driven primarily by the fire safety community.   This happens because public safety leadership falls upon the local Fire Marshall who has a budget that is widely understand and generally supported.

From the NFPA 303 scope statement:

 This standard applies to the construction and operation of marinas, boatyards, yacht clubs, boat condominiums, docking facilities associated with residential condominiums, multiple-docking facilities at multiple-family residences, and all associated piers, docks, and floats.

This standard also applies to support facilities and structures used for construction, repair, storage, hauling and launching, or fueling of vessels if fire on a pier would pose an immediate threat to these facilities, or if a fire at a referenced facility would pose an immediate threat to a docking facility.

This standard applies to marinas and facilities servicing small recreational and commercial craft, yachts, and other craft of not more than 300 gross tons.

This standard is not intended to apply to a private, noncommercial docking facility constructed or occupied for the use of the owners or residents of the associated single-family dwelling.

No requirement in this standard is to be construed as reducing applicable building, fire, and electrical codes.

The standard of care for facilities owned by educational institutions is not appreciably different from the standard of care for any other Owner except some consideration should be given to the age and training of most of the occupants — students, of course — who are a generally transient population.  Some research projects undertaken on university-owned facilities are also subject to the local adaptions of NFPA 303.  The current version of NFPA 303 is linked below:

FREE ACCESS: NFPA 303

 

Boathouse Row / Philadelphia

The 2021 Edition is the current edition and the next edition will be the 2025 revision.  Click on the link below to read what new ideas were running through the current edition; mostly electrical that are intended to correlate with National Electrical Code Article 555 and recent electrical safety research*:

NFPA 303 Public Input Report for the 2021 Edition

Public input closing date for the 2025 Edition is June 1, 2023.   

You may submit comment directly to NFPA on this and/or any other NFPA consensus product by CLICKING HERE.  You will need to set up a (free) account.   NFPA 303 document is also on the standing agenda of our 4 times monthly collaboration with the IEEE Education & Healthcare Facilities Committee.  See our CALENDAR for the next online colloquium; open to everyone.

Michigan Technological University

Issue: [16-133]

Category: Electrical, #SmartCampus, Facility Asset Management

Colleagues: Mike Anthony,  Jim Harvey


LEARN MORE:

* Marina Risk Reduction

NFPA 70 National Electrical Code (Article 555)

Examining the Risk of Electric Shock Drowning (ESD) As a Function of Water Conductivity

Coffee Taste Test

“The morning cup of coffee has an exhilaration about it
which the cheering influence of the afternoon or evening cup of tea
cannot be expected to reproduce.”

Oliver Wendell Holmes (“The Autocrat of the Breakfast-Table”, 1857)

All Dining Locations & Hours

Kitchenette Standards

The Decline of Men on Campus

Dartmouth University Facilities Operations & ManagementUtility Systems

IEEE Education & Healthcare Facilities Committee

Investment Office: Endowment Reports | $7.9B Total, $2.1B Facilities

Standards New Hampshire

Apricot Galettes

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Gallery: School Bond Referenda (August & November Ballots)

In terms of total spend, the US elementary and secondary school industry is about twice the size of the higher education industry according to IBISWorld. About $100 billion is in play every year for both (which we cover during our Ædificare colloquia); with higher education spending only half of what elementary and secondary school systems spend on facilities.

Note that some districts are including construction for faculty housing.

Our focus remains on applying global standard to create educational settlements that are safer, simpler, lower-cost and longer-lasting — not on the hurly-burly of local school bond elections.  We recommend consulting the coverage in American School & University for more detailed and more timely information.



Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content