Author Archives: [email protected]

Loading
loading...

United States Standards System

Essential Requirements
Your 2025 Guide to ANSI’s Community Resources

S. Joe Bhatia at the University of Michigan Ross School of Business | ANSI Company Member Forum, May 2016

CLICK ON IMAGE FOR COMPLETE PRESENTATION

With many non-profit organizations also challenged by the pandemic we are likely to see fewer experts at technology, finance and management gatherings where leading practice is discovered and promulgated.  That does not mean that many gatherings will not be offloaded onto the internet but, with fewer paid experts involved, one wonders whether there will be fewer unpaid experts — or will there be more unpaid experts?  We shall see.

Since the United States federal government can print money it is likely that more decision-making will be drawn back to Washington D.C.  — where the money is.  The likelihood that we shall see greater federal control over education facility industry originating at the federal level inspires a revisit of the United States standards system.   The National Institute of Standards and Technology is the oversight agency and the American National Standards Institute is the private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States.

To understand ideal balance in the US standards system See § 2.3 ANSI Essential Requirements: Due process requirements for American National Standards

 


FROM OUR ARCHIVE:

Trowel Trades

Bricklayers, sometimes known as masons, are skilled craftsmen that must be physically fit, have a high level of mathematical skill and a love for precision and detail.

 

Bricklaying standards are guidelines and specifications that ensure the quality and safety of bricklaying work. These standards are often established by industry organizations, regulatory bodies, or national building codes. While specific standards may vary by region, some core bricklaying standards include:

Building Codes: Compliance with local building codes is essential. These codes provide regulations for construction practices, including specifications for masonry work. Bricklayers must adhere to the building codes relevant to the specific location of the construction project.

ASTM International Standards: ASTM International (formerly known as the American Society for Testing and Materials) develops and publishes technical standards for various industries, including construction. ASTM standards related to bricklaying cover materials, testing procedures, and construction practices.

Masonry Construction Standards: Organizations like the Masonry Standards Joint Committee (MSJC) in the United States publish standards specifically focused on masonry construction. These standards address topics such as mortar, grout, reinforcement, and structural design considerations.

Quality Control: Standards related to quality control in bricklaying include specifications for mortar mixtures, proper curing of masonry, and guidelines for inspecting finished work. Adherence to these standards helps ensure the durability and longevity of the masonry construction.

Safety Standards: Occupational safety standards, such as those outlined by the Occupational Safety and Health Administration (OSHA) in the United States, are critical for protecting workers on construction sites. These standards cover aspects like fall protection, scaffolding safety, and the proper use of personal protective equipment.

Brick and Block Standards: Standards related to the dimensions, composition, and properties of bricks and concrete blocks are important for achieving structural integrity. These standards specify characteristics such as compressive strength, absorption, and dimensional tolerances.

Construction Tolerances: Tolerances dictate acceptable variations in dimensions and alignments in bricklaying work. These standards help ensure that the finished structure meets design specifications and industry-accepted tolerances.

Testing and Inspection: Standards related to the testing and inspection of masonry work help verify that construction meets specified requirements. This includes procedures for mortar testing, grout testing, and overall quality inspections.

It’s important for bricklayers and construction professionals to be aware of and follow these standards to guarantee the safety, quality, and compliance of their work. Additionally, staying informed about updates to industry standards is crucial as they may evolve over time to reflect advancements in materials, techniques, and safety practices.

St. Olaf College | Dakota County Minnesota

International Building Code Chapter 21: Masonry

Installer Tile Specialist Installation Standards

Home

Installer Tile Specialist (ITS) Installation Standards Verification (English)

archive

print (“Hello World!”)

Data Points (2023 Estimates for 193 countable nations):

Global Gross Domestic Product (GGDP) ~ $106.17T

Anglosphere (United States, United Kingdom, Canada, Australia, New Zealand) ~ $31T (or ~32% of GGDP)

United States GDP $27T (or about 1/3rd of GGDP)

 

“Livres des Merveilles du Monde” 1300 | Marco Polo | Bodleian Libraries, University of Oxford

Today we break down consultations on titles relevant to the technology and management of the real assets of education communities in the United States specifically; but with sensitivity to the global education markets where thousands of like-minded organizations also provide credentialing, instruction, research, a home for local fine arts and sport.

We steer away from broad policy issues and steer toward technical specifics of public consultations presented by national member bodies of the International Electrotechnical Commission, the International Organization for Standardization, the International Telecommunications Union and the American National Standards Institute.  If there is a likelihood that the titles published by these workgroups will be incorporated by reference into public safety or sustainability legislation; or integrated into the cost structure of education communities in any other way, we will listen carefully and contribute meaningfully where we can.

Vienna Convention on Diplomatic Relations | 1961 

 
“Even apart from the instability due to speculation, there is the instability due to the characteristic of human nature that a large proportion of our positive activities depend on spontaneous optimism rather than on a mathematical expectation, whether moral or hedonistic or economic. Most, probably, of our decisions to do something positive, the full consequences of which will be drawn out over many days to come, can only be taken as the result of animal spirits — a spontaneous urge to action rather than inaction, and not as the outcome of a weighted average of quantitative benefits multiplied by quantitative probabilities. Enterprise only pretends to itself to be mainly actuated by the statements in its own prospectus, however candid and sincere that prospectus may be. Only a little more than an expedition to the South Pole is it based on an exact calculation of benefits to come. Thus if the animal spirits are dimmed and the spontaneous optimism falters, leaving us to depend on nothing but a mathematical expectation, enterprise will fade and die; — though fears of loss may have a basis no more reasonable than hopes of profit had before.”

“The General Theory of Employment, Interest, and Money” 

— John Maynard Keynes, 1936

International Standard Classification of Education

American National Standards Institute

World Standards Week 2023

Setting the standard: Grange members can be voice of rural users in standardization system

ISO/IEC/ITU coordination – Listing of New Work Items (New: Passwords Required)

New ANSI Education Initiative Supports the Next Generation of Standardization Leaders

International Code Council

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE (3/17/2023)

International Zoning Code

International Electrotechnical Commission

International Electrotechnical Commission | CDV Consultations

IEC Open Consultations: 20 December

USNC/IEC  Current Winter 2023

IEC 87th General Meeting | Cairo, 22 – 26 October

Results from IEC General Assembly 2022 | San Francisco

Going All-Electric

Extended Versions  Certain standards are required to be read in tandem with another standard, which is known as a reference (or parent) document. The extended version (EXV) of an IEC Standard facilitates the user to be able to consult both IEC standards simultaneously in a single, easy-to-use document.

Elettrotecnico Lingua Franca

International Telecommunications Union

The case for standardizing homomorphic encryption

Outcomes of the ITU Plenipotentiary Conference

World Radiocommunication Conference

International Standardization Organization

How ISO codes connect the world

New partnership for ISO and ICC

Must-have skills for the green economy

Building Environment Design

A partial list of projects with which we have been engaged as an active participant; starting with the original University of Michigan enterprise in the late 1990’s and related collaborations with IEEE and others: (In BOLD font we identify committees with open consultations requiring a response from US stakeholders before next month’s Hello World! colloquium)

IEC/TC 8, et al System aspects of electrical energy supply

IEC/TC 22 Power electronic systems and equipment

IEC/TC 34 Lighting

IEC/TC 62 Electrical equipment in medical practice

IEC/TC 64 Electrical installations and protection against electric shock

IEC/TC 82 Solar photovoltaic energy systems

IEC/SYC Electrotechnical Aspects of Smart Cities

SyC Smart Energy


Standards Michigan Workspace for IEC/ITU Consultations


ISO/IEC JTC 1 Information Technology, et. al

ISO/TC 205 Building environmental design

ISO/TC 215 Health Informatics

ISO/TC 229 Nanotechnologies

ISO/TC 232 Education and Learning Services

ISO/TC 251 Asset Management

ISO/TC 260 Human Resource Management

ISO/TC 267 Facility Management

ISO/TC 268 Sustainable cities and communities

ISO/TC 274 Light and Lighting

ISO/TC 276 Biotechnology

ISO/TC 301 Energy management and energy savings

ISO/TC 304 Healthcare organization management

ISO/TC 336 Laboratory Design

We collaborate with the appropriate ANSI US TAG; or others elsewhere in academia.   We have begun tracking ITU titles with special attention to ITU Radio Communication Sector.

main( ) {
        printf("hello, world\n");
}

We have collaborations with Rijksuniversiteit Groningen, Sapienza – Università di Roma, Universität Zürich, Universität Potsdam, Université de Toulouse. Universidade Federal de Itajubá, University of Windsor, the University of Alberta, to name a few — most of whom collaborate with us on electrotechnology issues.  Standards Michigan and its 50-state affiliates are (obviously) domiciled in the United States.  However, and for most issues, we defer to the International Standards expertise at the American National Standards Institute

ANSI INTERACTIVE MAP: INTERNATIONAL TRADE & DEVELOPMENT

Use the login credentials at the upper right of our home page.

 

 

These three regions make up 50% of world GDP

 

More

Data Point: Global Construction Market is Expected to Reach $11 trillion by 2031

General Public Participation in ANSI ISO Activities

March 2021 edition of the TMB Communiqué.

ISO/IEC Directives, Part 1

ISO/IEC Directives, Part 1, Consolidated ISO Supplement

International Electrotechnical Commission Annual Report 2019

ISO Update  2021-02-09

ANSI Education & Training Overview

ANSI Guide for US Delegates

ITU Digital Technical Standards


* A “Hello, World!” program generally is a computer program that outputs or displays the message “Hello, World!”. Such a program is very simple in most programming languages (such as Python and Javascript) and is often used to illustrate the basic syntax of a programming language. It is often the first program written by people learning to code. It can also be used as a sanity test to make sure that a computer language is correctly installed, and that the operator understands how to use it.

 

Moral Inquiry



Freely Available ICT Standards

United States Technical Advisory Group Administrator: INCITS

“Le Lac Léman ou Près d’Evian au lac de Genève” 1883 François BocionISO and IEC Joint Technical Committee 1  is the work center for international information and communications technology (ICT) standards that are relevant to education communities.  In accordance with ISO/IEC JTC 1 and the ISO and IEC Councils, some International Standards and other deliverables are made freely available for standardization purposes.

Freely Available International Standards

We at least follow action, and sometimes contribute data and user-interest perspective, to the development of standards produced by several ANSI-accredited ICT standard developing organizations — ATIS, BICSI, IEEE, INCITS, TIA among them.  US-based organizations may communicate directly with Lisa Rajchel, ANSI’s ISO/IEC JTC 1 Senior Director for this project: [email protected].  Our colleagues at other educational organizations should contact their national standards body.

We scan the status of Infotech and Cloud standards periodically and collaborate with a number of IEEE Societies.  See our CALENDAR for the next online meeting; open to everyone.

More

The ISO/IEC Joint Technical Committee for Information Technology (JTC 1)

ISO/IEC JTC 1/SC 36 Information technology for learning, education and training

ISO/IEC JTC 1/SC 32 Data management and interchange

Healthcare Organization Management

Open consultations:

ISO_DIS 20364 Pandemic Response Standard Draft Open for Public Consultation Comments due July 1

ISO Healthcare Management Comments on Smart Hospital Standard due January 15

 Send Mike a message to coordinate comments

“Une leçon clinique à la Salpêtrière” 1887 André Brouillet

Many large research universities have significant medical research and healthcare delivery enterprises. The leadership of those enterprises discount the effect of standards like this at their peril. It is easy to visualize that this document will have as transformative effect upon the healthcare industry as the ISO 9000 series of management standards in the globalization of manufacturing.

Scope

Standardization in the field of healthcare organization management comprising, terminology, nomenclature, recommendations and requirements for healthcare-specific management practices and metrics (e.g. patient-centered staffing, quality, facility-level infection control, pandemic management, hand hygiene) that comprise the non-clinical operations in healthcare entities.

Excluded are horizontal organizational standards within the scope of:

    • quality management and quality assurance (TC 176);
    • human resource management (TC 260);
    • risk management (TC 262);
    • facility management (TC 267), and;
    • occupational health and safety management (TC 283).

Also excluded are standards relating to clinical equipment and practices, enclosing those within the scope of TC 198 Sterilization of health care products.

This committee is led by the US Technical Advisory Group Administrator —Ingenesis.   The committee is very active at the moment, with new titles drafted, reviewed and published on a near-monthly basis,

 

DPAS ballot for ISO PAS 23617- Healthcare organization management: Pandemic response  (respiratory) —Guidelines for medical support of socially vulnerable groups – Comments due 16 October

ISO-TC 304 Healthcare Organization Management- Pandemic response – Contact tracing – Comments due August 3, 2023

[Issue 14-99]

Contact:  Lee Webster ([email protected], [email protected]), Mike Anthony ([email protected]), Jack Janveja ([email protected]), Richard Robben ([email protected]), James Harvey ([email protected]), Christine Fischer ([email protected]), Dr Veronica Muzquiz Edwards ([email protected])

Category: Health, Global

Workspace / ISO 304 Healthcare Administration

More

Journal of Healthcare Management Standards: Operational Resilience of Hospital Power Systems in the Digital Age

ISO Focus Special Issue on Healthcare

ISO/TC 48 Laboratory equipment

ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems

ISO/TC 198 Sterilization of health care products

How do standards contribute to better healthcare?

  • The American National Standards Institute — the Global Secretariat for ISO — does not provide content management systems for its US Technical Advisory Groups.  Because of the nascent committee, inspired by the work of Lee Webster at the University of Texas Medical Branch needed a content management system, we have been managing content on a Google Site facility on a University of Michigan host since 2014.Earlier this spring, the University of Michigan began upgrading its Google Sites facility which requires us to offload existing content onto the new facility before the end of June.  That process is happening now.  Because of this it is unwise for us to open the content library for this committee publicly.  Respecting copyright, confidentiality of ISO and the US Technical Advisory Group we protect most recent content in the link below and invite anyone to click in any day at 15:00 (16:00) UTC.  Our office door is open every day at this hour and has been for the better part of ten years.

Fashion Technology

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton


Garment Industry Standards

Gallery: School Uniforms

Textiles

Art, Design & Fashion Studios

Canadian Parliament Debate on Standards Incorporated by Reference

“The Jack Pine” | Tom Thomson (1916) | National Gallery of Canada

 

Originally posted January 2014

In these clips — selected from Canadian Parliamentary debate in 2013 — we observe three points of view about Incorporation by reference (IBR); a legislative drafting technique that is the act of including a second document within a main document by referencing the second document.

This technique makes an entire second (or referenced) document a part of the main document.  The consensus documents in which we advocate #TotalCostofOwnership concepts are incorporated by reference into legislation dealing with safety and sustainability at all levels of government.  This practice — which many consider a public-private partnership — is a more effective way of driving best practices for technology, and the management of technology, into regulated industries.

Parent legislation — such as the Higher Education Act of 1965, the Clean Air Act and the Energy Policy Act – almost always require intermediary bureaucracies to administer the specifics required to accomplish the broad goals of the legislation.  With the gathering pace of governments everywhere expanding their influence over larger parts of the technologies at the foundation of national economies; business and technology standards are needed to secure that influence.  These standards require competency in the application of political, technical and financial concepts; competencies that can only be afforded by incumbent interests who build the cost of their advocacy into the price of the product or service they sell to our industry.  Arguably, the expansion of government is a reflection of the success of incumbents in business and technical standards; particularly in the compliance and conformity industries.

About two years ago, the US debate on incorporation by reference has been taken to a new level with the recent statement released by the American Bar Association (ABA):

16-164-Incorporation-by-Reference-ABA-Resolution-and-Report

The American National Standards Institute responded to the ABA with a statement of its own.

16-164-ANSI-Response-to-ABA-IBR-06-16 (1)

The incorporation by reference policy dilemma has profound implications for how we safely and economically design, operate and maintain our “cities-within-cities” in a sustainable manner but, admittedly, the results are only visible in hindsight over a time horizon that often exceed the tenure of a typical college or university president.

A recent development — supporting the claims of ANSI and its accredited standards developers — is noteworthy:

The National Institute for Standards and Technology (NIST) manages a website — Standards.GOV — that is a single access point for consensus standards incorporated by reference into the Code of Federal Regulations: Standards Incorporated by Reference Database.   Note that this database does not include specific reference to safety and sustainability codes which are developed by standards setting organizations (such as NFPA, ICC, IEEE, ASHRAE and others) and usually incorporated by reference into individual state public safety and technology legislation.


LEARN MORE:

 

Metering and Billing

Although electrical power  delivered with both active and reactive components our interest lies primarily in the useable power component — watts (power) and watt-hour(energy).  A secondary concern is whether or not energy useage meters are over-specified; particularly on points in building power chains downstream from the utility service meters.

Electrical meters, used for measuring electricity consumption, must comply with various codes and standards to ensure accuracy, safety, and reliability.  Today at the usual hour – from the user point of view – we will review the status of key codes and standards relevant to electrical meter manufacturing, primarily focusing on North American standards.  Use the login credentials at the upper right of our home page.

ANSI C12.1 – Code for Electricity Metering

  • Specifies performance criteria for AC watt-hour meters, demand meters, pulse devices, and auxiliary devices.
  • Covers testing, installation, accuracy classes, voltage/frequency ratings, and environmental tests (e.g., RF interference).
  • Current edition: ANSI C12.1-2024.

ANSI C12.10 – Physical Aspects of Watt-hour Meters

  • Defines physical and dimensional requirements for watt-hour meters, including socket and bottom-connected meters.
  • Ensures compatibility with metering installations.

ANSI C12.20 – Electricity Meters – 0.1, 0.2, and 0.5 Accuracy Classes

  • Establishes accuracy requirements for revenue-grade meters (0.1%, 0.2%, and 0.5% accuracy classes).
  • Note: Content merged into ANSI C12.1 in recent updates, with C12.20 withdrawn.

ANSI C12.31 – Standard Definitions of AC Electrical Power

  • Defines terms for active, reactive, and apparent power/energy, ensuring consistent measurement methodologies.
  • Under revision as ANSI C12.31-202x.

NEMA C12 Series

  • Published by the National Electrical Manufacturers Association (NEMA).
  • Aligns with ANSI C12 standards, focusing on metering equipment specifications and safety.

UL 2735 – Standard for Electric Utility Meters

  • Safety standard for electric meters, addressing electrical shock, fire hazards, and mechanical risks.
  • Ensures meters meet safety requirements for installation and operation.

NFPA 70 – National Electrical Code (NEC)

  • While not specific to manufacturing, NEC governs meter installation requirements (e.g., meter base mounting, grounding).
  • Relevant for ensuring meters comply with installation safety standards.  We cover this topic of a safety point of view in the sessions linked below:

Electric Service Metering & Billing

Electrical Meter Center Manufacturing

Related:

The Effects of Energy Dashboards and Competition Programming on Electricity Consumption on a College Campus (Western Michigan University)

Comparative Feedback on Consumers’ Energy-Saving Behavior: A College Dormitory Example

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content