Tag Archives: D4/1

Loading
loading..

προμηθέας 300

Today we run through recent action in fire safety best practice literature.  Even though fire safety technologies comprise about 2-4 percent of a new building budget, the influence of the fire safety culture dominates all aspects campus safety; cybersecurity of public safety communication technology for example.

A small sample of the issues we have tracked in the past: (2002-2023).  Items in RED indicate success in reducing cost with no reduction in safety (i.e. successful rebuttal, typically market-making by incumbents)

  • Limiting vendor lock-in (promote interoperability) in building additions.
  • Limiting the tendency to lowball first cost in order to achieve vendor lock-in later in the facility life-cycle
  • Dormitory kitchen fire safety

Fire Safety of University Dormitory Based on Bayesian Network

  • Clarification of mixed-occupancy classifications (occupant loading)
  • Fixed interval (rather than risk-informed) inspection, testing and maintenance of fire alarm and protection system components
  • Fire alarm system upgrades during renovation

Gamification Teaching in School Fire Safety

  • Mixed zone and addressable alarm system wiring
  • Wireless initiation devices
  • Integrated fire protection systems (NFPA 3&4)
  • Portable fire extinguishers (NFPA 10)

Hospital Evacuation under Fire

  • Alarm system re-set procedures
  • Sprinkler system coverage for animals in research
  • Scalability of fire safety professional certification
  • Sprinklering of off-campus student housing
  • Advocating central (or campus district) fire pump systems

One of the newer issues to revisit over the past few years is the fire safety of tents.   Many colleges and universities are setting up large commercial tents outside buildings (within range of Wi-Fi) for students to congregate, study and dine.  We are also seeing back and forth on fire safety in theatrical performance venues in the International Code Council building safety catalog.

We approach these titles with an eye toward driving risk-informed, performance requirements that reduce risk and cost for the user interest; while recognizing the responsibility of competitor stakeholders.   It is not a friendly space for the user-interest who seeks to optimally resolve the competing requirements of safety and economy.   Vertical incumbents completely dominate this domain.

Prepared Hero Fire Blanket

Relevant NFPA Titles:

NFPA 10 Standard for Portable Fire Extinguishers

    • Public Input Closing Date: June 1, 2023

NFPA 13 Standard for the Installation of Sprinkler Systems

NFPA 25 Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

NFPA 72 National Fire Alarm and Signaling Code®

    • Public Comment Closing Date: May 31, 2023

NFPA 75 Standard for the Fire Protection of Information Technology Equipment

NFPA 76 Standard for the Fire Protection of Telecommunications Facilities

NFPA 92 Standard for Smoke Control Systems

    • Public Comment Closing Date: January 4, 2023

International Code Council Group A 2021/2022 Code Cycle

Use the login credentials at the upper right of our home page.


More

NFPA Report: Structure Fires in Dormitories, Fraternities, Sororities and Barracks 

ASTM Committee E0% on Fire Standards

Standing Agenda / Prometheus


Key Updates on Fire Safety Standards

Why do Humans Stare at Fire? : Scientific aspects of primal magic of fire

International Fire Code

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

ICC BCAC | Comments to be presented at October Hearings

Noteworthy Proposals:

IFC 1010.27 Locking arrangements, PDF page 252

IFC 1020.2 Corridor Fire Resistance Ratings. PDF page 356

IFC 915 More Carbon Monoxide Detection Systems, PDF page 1156

IBC 917 Mass notification for Group E occupancies, PDF page 1176

IFC 5701 More Process Hazard Analysis, PDF page 1571

The transcript (Complete Monograph) of Committee Actions should be available by September 5th.

Committee Action Hearings on Proposed Changes: October 23-31 Long Beach, California

“A Square with Imaginary Buildings” | Hendrik van Steenwijck (1614)

LIVE: I-Code Group B Public Comment Hearings

Higher Education Laboratories

“Waking Effectiveness of Alarms for Adults Who Are Hard of Hearing” 2007  Victoria University, Australia

Health Facilities: Navigating IBC and NFPA differences


Posted February 14, 2023

Free access to the latest edition of the IFC is linked below:

2021 International Fire Code

Following the ICC Group A revision cycle public consultation on the 2024 International Fire Code will begin.  The ICC will announce the development schedule sometime in 2022.

We limit our resources simply tracking the proposals that run through Group E (Educational) and Group I (Institutional) occupancies in the Group A suite with closer attention to the state they are adopted whole cloth or with local exceptions.  In many cases, IFC adoption by state and local authorities is delayed by one or more previous code revisions.  This delay in adoption may be necessary in order for jurisdictions to evaluate the impact of changes upon the region under their authority.

Public safety budgets historically support the local and state fire marshal and his or her staff.   The revenue stream of many trade associations originates from membership, conference attendance, training and certification enterprises that service the public sector stakeholder.   Manufacturer sponsorship of trade association conferences is noteworthy.

Unless there is an idea, or proposed regulation that has run off the rails (either in terms of rigor or cost increase) — we place fire safety in the middle of our ranking of priorities.  With gathering pace, we find many fires safety goals being met with electrotechnologies where we place our highest priority.

Click on image for more information. The map is updated by expert agencies frequently so we recommend a web search for an update.

Significant code changes rarely happen within a 3-year cycle so it is wise to follow ideas as they travel through the agendas of technical committees through several cycles as administered by the Fire Code Action Committee.

The ICC posts the transcripts of public proposals, technical committee responses to public proposals, public response to the technical committee response and the final balloting in a fair and reasonable fashion as can be seen in the transcripts linked below:

2021 International Fire Code Proposed Changes

2021 International Fire Code Public Comment Agenda 

A search on the terms “classroom” or “school” in any of the documents above offers granular insight into the trend of current thinking.   We find fire extinguishers placement a perennial concern across several standards suites.   You will note the careful consideration of proposals for use of the mass notification systems, now integrated into fire alarm systems and their deployment in active shooter situations.

The transcripts reveal detailed understanding and subtlety.

“The Country School” | Winslow Homer

There are many issues affecting the safety and sustainability of the education facility industry.  We add value to the industry because of our cross-cutting perspective on the hundreds of “silos”created by the competition (and sometimes cooperation) among accredited, consortia and open-source standards developers.  We have the door open every day at 11 AM Eastern time to enlighten understanding of them all.  We also host a breakout teleconference every month to drill into the specifics of standards action on fire safety for the real assets of school districts, colleges and universities.  See our CALENDAR for the next online meeting.

Finally, we persist in encouraging education industry facility managers (especially those with operations and maintenance data) to participate in the ICC code development process.  You may do so by CLICKING HERE.

The ICC Group B Code Meetings will be hosted soon and open to the public:   

International Code Council 2022 Group B Public Comment Agenda (September 14-21 Kentucky International Convention Center)

The Group B tranche is largely focused on energy, structural, residential and existing building concepts but all of the titles cross-reference the IFC in some way so it is wise to follow how the concepts re-arrange and cross-reference themselves with each cycle.

 

Issue: [16-169]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony,  Casey Grant, Joshua Evolve, Marcelo Hirschler


More

2021/2022 ICC CODE DEVELOPMENT SCHEDULE

FINAL ACTION RESULTS ON THE 2018 PROPOSED CHANGES TO THE INTERNATIONAL CODES – GROUP A

2018 GROUP A PROPOSED CHANGES TO THE I-CODES COLUMBUS COMMITTEE ACTION HEARINGS

2018 GROUP A PUBLIC COMMENT AGENDA | INTERNATIONAL BUILDING CODE

2018 GROUP A PUBLIC COMMENT AGENDA | INTERNATIONAL FIRE CODE

2018 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2018 EDITIONS OF THE GROUP A INTERNATIONAL CODES

 

 

Dutch Institute for Fundamental Energy Research

Apollo – Helios Driving The Chariot Of The Sun, 1517-18

“DIFFER” is a research institute domiciled at TU/e that is focused on advancing the development of sustainable energy technologies, such as fusion energy and solar fuels. It conducts fundamental research on plasma physics and materials science to understand the behavior of matter at extremely high temperatures and under extreme conditions.

DIFFER also collaborates with universities, research institutions, and industry partners to translate their research into practical applications. The institute’s ultimate goal is to develop new and innovative solutions to meet the world’s growing demand for energy while reducing greenhouse gas emissions and environmental impact.  

Among its findings and recommendations: “Electrochemical Production of Ammonia from Renewable Energy: A Thermodynamic Analysis” published in the Journal of The Electrochemical Society in 2018, which evaluated the thermodynamic feasibility of using renewable energy to produce ammonia, an important fertilizer, through electrochemical processes.

N.B. Ammonia can be deployed for energy conservation purposes in various ways, such as:

  1. Energy storage: Ammonia can be used as a means of storing energy from renewable sources, such as wind and solar power, in the form of chemical energy. This stored energy can be released by converting ammonia back into electricity through fuel cells or by burning it in a combustion engine.
  2. Power generation: Ammonia can be used directly as a fuel in combustion engines or turbines to generate electricity, without emitting greenhouse gases or other harmful pollutants.
  3. Heating and cooling: Ammonia can be used as a refrigerant or heat transfer fluid in industrial processes, air conditioning systems, or district heating networks, reducing the energy required for cooling and heating.
  4. Fuel for transportation: Ammonia can be used as a fuel for ships, trains, or other heavy-duty vehicles, reducing emissions of greenhouse gases and other pollutants.

However, it is worth noting that the deployment of ammonia for energy conservation purposes requires the development of suitable technologies for its production, transportation, and storage, as well as the necessary infrastructure to support its use.

Nederland

Storm Shelters

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

Latest News and Documents

“Landscape between Storms” 1841 Auguste Renoir

 

When is it ever NOT storm season somewhere in the United States; with several hundred schools, colleges and universities in the path of them? Hurricanes also spawn tornadoes. This title sets the standard of care for safety, resilience and recovery when education community structures are used for shelter and recovery.  The most recently published edition of the joint work results of the International Code Council and the ASCE Structural Engineering Institute SEI-7 is linked below:

2020 ICC/NSSA 500 Standard for the Design and Construction of Storm Shelters.

Given the historic tornados in the American Midwest this weekend, its relevance is plain.  From the project prospectus:

The objective of this Standard is to provide technical design and performance criteria that will facilitate and promote the design, construction, and installation of safe, reliable, and economical storm shelters to protect the public. It is intended that this Standard be used by design professionals; storm shelter designers, manufacturers, and constructors; building officials; and emergency management personnel and government officials to ensure that storm shelters provide a consistently high level of protection to the sheltered public.

This project runs roughly in tandem with the ASCE Structural Engineering Institute SEI-17 which has recently updated its content management system and presented challenges to anyone who attempts to find the content where it used to be before the website overhaul.    In the intervening time, we direct stakeholders to the link to actual text (above) and remind education facility managers and their architectural/engineering consultants that the ICC Code Development process is open to everyone.

The ICC receives public response to proposed changes to titles in its catalog at the link below:

Standards Public Forms

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

You are encouraged to communicate with Kimberly Paarlberg (kpaarlberg@iccsafe.org) for detailed, up to the moment information.  When the content is curated by ICC staff it is made available at the link below:

ICC cdpACCESS

We maintain this title on the agenda of our periodic Disaster colloquia which approach this title from the point of view of education community facility managers who collaborate with structual engineers, architects and emergency management functionaries..   See our CALENDAR for the next online meeting, open to everyone.

Readings:

FEMA: Highlights of ICC 500-2020

ICC 500-2020 Standard and Commentary: ICC/NSSA Design and Construction of Storm Shelters

IEEE: City Geospatial Dashboard: IoT and Big Data Analytics for Geospatial Solutions Provider in Disaster Management

 

Property Loss Prevention

Left Panel Of George Julian Zolnay’s Allegorical “Academic, Business & Manual Education” Granite Frieze At Francis L. Cardozo High School (Washington, DC)

All fifty United States have their own “signature” disaster with which to reckon; some more than others.   California has earthquakes, Florida has hurricanes, Missouri has floods; and so on,  Life and property loss are preventable; but losses will persist because technical solutions notwithstanding, culture determines human behavior.  It is impossible to be alive and safe.

FM Global is one of several organizations that curate privately developed consensus products that set the standard of care for many industries; education communities among them.  These standards contribute to the reduction in the risk of property loss due to fire, weather conditions, and failure of electrical or mechanical equipment.  They incorporate nearly 200 years of property loss experience, research and engineering results, as well as input from consensus standards committees, equipment manufacturers and others.

If you want FMGlobal as your insurance carrier, or to supplement your organization’s self-insurance program, then you will likely be assigned an FMGlobal conformity professional.

A scan of its list data sheets indicate a number of noteworthy updates of documents establishing minimum requirements for safety technologies common in education facilities:

Technical Reports Supporting Code Change

Note that the bulk of the safety concepts in the foregoing titles incorporate by reference the safety concepts that cross our radar every day   FM Global provides direct access to the full span of its documents at this link:

FM GLOBAL PROPERTY LOSS PREVENTION DATA SHEETS

Note FM Global updates its standards every three months:

Standards in Progress

To respond to calls for public consultation you will need to set up (free) access credentials.

We keep FMGlobal titles — and the literature of other property insurers involved in standards setting — on the standing agenda of our Risk, Snow and Prometheus colloquia.  See our CALENDAR for the next meeting.

Issue: [Various]

Category: Risk, Facility Asset Management


More

Deloitte University: Innovation in Insurance

University of Pennsylvania demonstrates the critical importance of sprinklers in dormitories

Syracuse University presents an eclectic mix of risk management challenges

Jackson Laboratory

Representative force majeure clauses.

Example 1: Basic Force Majeure Clause

“Neither party shall be liable for any failure or delay in performance of its obligations under this agreement due to events beyond its reasonable control, including but not limited to acts of God, war, terrorism, civil commotion, labor strikes, and natural disasters. The affected party shall promptly notify the other party of the force majeure event and take reasonable steps to mitigate its impact on performance. During the continuance of such events, the obligations of the affected party shall be suspended, and the time for performance shall be extended.”

Example 2: Detailed Force Majeure Clause

“In the event that either party is unable to perform its obligations under this agreement due to a force majeure event, the affected party shall promptly notify the other party in writing, specifying the nature and anticipated duration of the force majeure event. Force majeure events shall include, but are not limited to, acts of God, strikes, lockouts, government action or inaction, war, terrorism, epidemics, and natural disasters. The affected party shall use reasonable efforts to overcome or mitigate the effects of the force majeure event. If the force majeure event continues for a period of [specified duration], either party may terminate this agreement by providing written notice to the other party.”

 

 

Climate Psychosis

“The only thing worse than religion is lack of religion”

Edmund Burke

 

A conversation with Bjorn Lomborg, a visiting fellow at the Hoover Institution, the president of the Copenhagen Consensus Center, and one of the foremost climate experts in the world today. His new book — “False Alarm: How Climate Change Panic Costs Us Trillions, Hurts the Poor, and Fails to Fix the Planet” — is an argument for treating climate as a serious problem but not an extinction-level event requiring such severe and drastic steps as rewiring a large part of the culture and the economy.

How easy it is to make people believe a lie, and [how] hard it is to undo that work again! - Mark Twain

Dialectic: Climate Change

Mass Formation Psychosis

Centre for Studies of Climate Change Denialism

Readings

Brookings: Michael Crichton and Global Warming

Case Study: Center Grove Community School Corporation Security

Standards Indiana § Greenwood

“Center Grove Schools enters the 2022/2023 school year with a new high-tech safety partner — Centegix CrisisAlert — purchased in part with school safety grant money that pairs with their Emergency Operations Center that opened in January 2022.  The CrisisAlert program  puts security at the fingertips of all teachers and staff.

Both systems address what the district learned it had to work on from a school safety assessment back in 2018 – live monitoring and faster response times in an emergency.   Seven-hundred cameras will scan every school in real-time from the district’s Emergency Operations Center. — More”

Center Grove school security at the push of a button

Security 100

Center Grove Community School Corporation

“A Sunny Day in Springville (Lawrence County, Indiana)” | n.d. Will Vawter

Exploring technological preventive methods for school shootings

North Carolina Agricultural and Technical State University

Exploring technological preventive methods for school shootings

Kelechi M. Ikegwu – Evelyn Sowells – Howard Hardiman

Department of Computer Systems Technology, North Carolina A&T State University

 

ABSTRACT.  The horrific and tragic deaths that have resulted from infamous school shootings have deprived Americans of the sense of security in what has traditionally been a nurturing and safe environment. This paper will discuss different preventive methods for school shootings. The most current preventive methods are examined for fitness based on a variety of school shootings that have occurred in the past. Then a framework for a new school shooting protection device is proposed and evaluated. Concepts from computer vision, anomaly detection, and electromagnetic propulsion are discussed with respect to the proposed framework. Ideally, the goal of the framework presented in this paper is to prevent deaths and injuries from occurring during a school shooting. With the framework, an efficient and comparatively affordable preventive method could be released in the near future.

CLICK HERE to order complete paper

 

K-12 School Security

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content